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Since Hurricane Katrina, extensive studies have been conducted aiming to 

optimize the transit vehicle routing in the event of an emergency evacuation. However, 

the vast majority of the studies focus on solving the deterministic vehicle routing problem 

that all the evacuation data are known in advance. These studies are generally not 

practical in dealing with real-world problems which involve considerable uncertainty in 

the evacuation data set. In this dissertation, a SmartEvac system is developed for dynamic 

vehicle routing optimization in emergency evacuation. The SmartEvac system is capable 

of processing dynamic evacuation data in real time, such as random pickup requests, 

travel time change, network interruptions. The objective is to minimize the total travel 

time for all transit vehicles. 

A column generation based online optimization model is integrated into the 

SmartEvac system. The optimization model is based on the following structure: a master 

problem model and a sub-problem model. The master problem model is used for routes 

selection from a restricted routes set while the sub-problem model is developed to 

progressively add new routes into the restricted routes set. The sub-problem is formulated 
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as a shortest path problem with capacity constraint and is solved using a cycle elimination 

algorithm. When the evacuation data are updated, the SmartEvac system will reformulate 

the optimization model and generate a new routes set based on the existing routes set. 

The computational results on benchmark problems are compared to other studies in the 

literature. The SmartEvac system outperforms other approaches on most of the 

benchmark problems in terms of computation time and solution quality. 

CORSIM simulation is used as a test bed for the SmartEvac system. CORSIM 

Run-Time-Extension is developed for communications between the simulation and the 

SmartEvac system. A case study of the Hurricane Gustav emergency evacuation is 

conducted. Different scenarios corresponding to different situations that presented in the 

Hurricane Gustav emergency evacuation are proposed to evaluate the performance of the 

SmartEvac system in response to real-time data. The average processing time is 28.9 

seconds and the maximum processing time is 171 seconds, which demonstrate the 

SmartEvac system’s capability of real-time vehicle routing optimization. 
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CHAPTER I 

INTRODUCTION 

Background and Motivation 

In 2005, transit could have played an important role by assisting in the evacuation 

of an estimated 150 to 200 vulnerable residents in Gulf Coast region who lacked access 

to a private vehicle during Hurricane Katrina. A transit evacuation plan was proposed but 

not carried out effectively due to incident control failure and resources unavailability, e.g. 

few transit drivers reported to work. In response to the lessons learned from Hurricane 

Katrina, transit agencies are taking more active actions in evacuating transit-dependent 

populations from emergency. Federal Transit Administration has established the 

Advanced Public Transportation Systems (APTS) program to encourage development 

and implementation of innovative technologies and strategies to improve transit service 

in emergency.  In Los Angeles, transit-dependent people are able to register with APTS 

over the phone. APTS will call them three times to verify their demand for transportation 

assistance and to inform them when the evacuation service is on the way. In addition, 

transit agencies across the nation, including Regional Transportation District (RTD) in 

Denver, Milwaukee County Department of Public Works Transportation Division 

(MCTD), Kansa City Area Transportation Authority (KCTA), Maryland’s Mass Transit 

Administration (MTA), and Dallas Area Rapid Transit (DART), are implementing 

Automatic Vehicle Location (AVL) system to monitor both locations and performances 
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of transit vehicles. Data collected by AVL can be used to monitor schedule adherence 

and conduct real-time transit vehicle routing.   

Other active measures include the following (White, 2008): 

 Develop transit emergency evacuation plans coordinated with regional 

evacuation plans. 

 Register transit-dependent people. 

 Identify the maximum number of transit-dependent people that could be 

serviced. 

 Consider school buses and drivers for meeting the surge demands of 

emergency evacuation. 

 Develop plans specially for evacuating people with special needs, e.g., the 

disabled, the elderly. 

 Develop standby emergency service contracts to fill the remaining transit 

service gap. 

 Build real time communication among transit drivers, emergency 

managers, infrastructures, as well as the public.  

 Coordinate with state and local department of transportation to provide 

dedicated lanes to facilitate transit trips in emergency evacuation. 

The above actions have illustrated the progress achieved since 2005. However, 

the potential for transit to play a more significant role in emergency evacuation is still far 

from being realized. The USDOT (U.S. Department of Transportation) study (USDOT, 

2006) evaluated the evacuation plans in the Gulf Coast region. The assessment focused 

on the role of transit in emergency evacuation in the 33 urbanized areas of Gulf Coast 
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region. In 11 of the 33 urbanized areas, transit was included in the emergency evacuation 

plans, but only 7 of the plans provided sufficient detail concerning the role of transit in 

emergency evacuation. There are many factors that limit the role of transit. An obvious 

limitation is caused by damage to transportation system. For example, two major bridges 

on U.S. 90 along Mississippi Gulf Coast, the Bay St. Louis Bridge and the Biloxi Bay 

Bridge, were destroyed completely by Hurricane Katrina, which seriously impeded the 

emergency evacuation progress. Another limitation comes from severe congestions in 

peak hours of emergency evacuation. Transit service could be interrupted due to the 

transportation network capacity shortfall. One of the most serious limitations is 

unpredictability of evacuation data. Even for a hurricane emergency evacuation with 

advance notice, when the hurricane will make landfall and what its path is will be remain 

uncertain in the planning stage. The number of evacuees also largely depends on the size 

and severity of the hurricane. It could seriously hamper the transit service if the system 

could not respond to updated evacuation data in real time. 

Current fleet management software used by transit agencies, such as RouteMatch 

and SafePath, are designed for regular operations when the environment and relevant 

factors are predictable and relatively stationary. These commercial software tools 

however cannot handle transit operations efficiently in uncertain environment. It is 

anticipated that in the future the transit agencies need to update both software and 

hardware in order to efficiently operate the transit in emergency evacuation. 

Transit operations in emergency evacuation is defined as a Capacitated Dynamic 

Vehicle Routing Problem with Pickup and Delivery (CDVRPPD), which is an extension 

of the traditional Vehicle Routing Problem (VRP). The CDVRPPD involves solving the 
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vehicle routing problem with pickup and delivery in a real-time environment. In the past 

decade, numerous studies on the VRP have been published. The majority of the VRP 

literature is dedicated to the deterministic VRP that all the data are known in advance. 

However, transit operations in a real-world emergency evacuation often involve 

uncertainties with respect to the locations and demands of unregistered evacuees, road 

travel time, etc. Thus a practical transit management system should be able to capture 

real-time evacuation data, and re-optimize transit vehicle routes based on real-time 

evacuation data. Recent developments in communication technologies make it realizable 

and affordable to update evacuation data in real time. As real-time evacuation data is 

available to transit agencies, a fleet management system capable of real-time evacuation 

data processing and dynamic transit vehicle routing becomes more urgent. In this 

dissertation, a SmartEvac system is developed for fleet management in emergency 

evacuation. Features of the SmartEvac system include: 

 Real-time evacuation data collection and processing; 

 Demand-responsive transit vehicle routing and scheduling; 

 Real-time response to transportation network interruptions. 

Objectives and Approaches 

The objective of this dissertation is to develop a real-time transit management 

system, called SmartEvac, which can be adopted in emergency evacuations of mid-size 

cities. It is an intelligent system designed to support more effective delivery of transit 

service. The SmartEvac system focuses on optimizing the fleet planning, scheduling, and 

operations. 
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The SmartEvac system supports advanced demand-responsive transit vehicle 

routing and scheduling. When a pickup request comes into the system, the SmartEvac 

system can assist in quickly dispatching appropriate service to the location and rerouting 

the system to ensure system-wide efficiency. 

Transit service is monitored through collection of operational data, including 

vehicle positions, evacuee data, and traffic conditions. In the events that impact schedule 

adherence, such as severe congestions and transportation network interruptions, the 

SmartEvac system could take quick actions, such as rerouting, to improve schedule 

adherence. 

In order to improve transit route running times, a CDVRPPD model is 

implemented in the SmartEvac system to optimize the total travel time. The CDVRPPD 

model is based on a master problem – sub-problem structure. The master problem is 

formulated as a Set Covering (SC) model which is used for routes selection from a 

restricted routes set. The sub-problem is formulated as an Elementary Shortest Path 

Problem with Capacity Constraint (ESPPCC) model which progressively adds new routes 

into the restricted routes set. 

A column generation based dynamic algorithm is implemented to solve the 

CDVRPPD model. The sub-problem is solved using a Cycle Elimination (CE) algorithm. 

CPLEX is used as the Linear Programming (LP) and Mixed Integer Programming (MIP) 

solver. In order to evaluate the performance of the proposed algorithms, computational 

results on benchmark problems are compared to other studies in the literature in terms of 

solution quality and computation time.  
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The SmartEvac system is validated through a case study of Hurricane Gustav 

evacuation in Gulfport, MS. CORSIM simulation is conducted as a proof-of-concept to 

demonstrate the SmartEvac system’s feasibility in a dynamic environment. CORSIM 

Run-Time-Extension (RTE) is developed as a communication interface which enables 

data exchange between CORSIM simulation and the SmartEvac system. Different 

scenarios corresponding to different situations that happened in the Hurricane Gustav 

emergency evacuation are proposed to evaluate the performance of the SmartEvac system 

in response to real-time data. 

Significance of the Study 

The proposed SmartEvac system will enhance the transit service in emergency 

evacuation. Literature review indicates that transit agencies are playing an important role 

in evacuating transit-dependent people in emergency evacuation; however, many issues 

remain unsolved. One of the key issues that affect the evacuation capability is to respond 

to new pickup requests. The SmartEvac system integrated with state-of-the-art dynamic 

vehicle routing models and algorithms will effectively handle real-time pickup requests. 

The dynamic feature of the SmartEvac system gives the dispatcher greatly improved 

awareness of traffic conditions on the road and the ability to take quick actions to respond 

to new pickup requests. 

The SmartEvac system is expected to have many benefits, including: 

 Increased operating efficiency; 

 Increased service reliability; 

 Increased resilience of transit service in an emergency; 
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 Improved response to surge demands; 

 Improved response to service disruptions; 

In summary, the SmartEvac system will improve the efficiency and safety of 

transit service, which leads to a successful emergency evacuation. Since a poorly 

executed emergency evacuation risks significant loss of life, particularly among those 

who are transit-dependent, the SmartEvac system would not only provide efficient and 

reliable transit service, but also save lives when dynamic factors are involved in the 

emergency evacuation. 

Outline of the Dissertation 

This dissertation consists of six chapters. In chapter 1 the background and 

motivation of the SmartEvac system is described. Chapter 2 presents a review of relevant 

literature. The development of a CDVRPPD model and its variants are presented in 

chapter 3. Chapter 4 describes the cycle elimination algorithm to the CDVRPPD model 

and the SmartEvac system design. Chapter 5 proposes a case study of Hurricane Gustav 

evacuation. Chapter 6 summarizes the dissertation and subsequent studies. 
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CHAPTER II 

LITERATURE REVIEW 

In this chapter, state-of-art evacuation modeling techniques are discussed. A 

comprehensive literature review of existing vehicle routing problem models, algorithms, 

and software packages is presented. 

Evacuation Modeling 

Transit evacuation is playing an increasingly important role following the strikes 

of severe hurricanes such as Hurricane Katrina and Rita in 2005, and more recently, 

Hurricane Sandy in 2012. To protect the general public from disaster, it is necessary to 

develop more advanced evacuation model for evaluating or optimizing transit evacuation 

operations. Most studies on transit evacuation operations focus on two types of off-line 

model: simulation model and optimization model. Simulation models are categorized into 

three groups, microscopic, macroscopic, and mesoscopic, depending on the level of detail 

at which the traffic information is described. Simulation models allow evacuation 

managers to develop and compare different evacuation plans for different hypothetical 

emergency scenarios (Yuan et al., 2006). 

Macroscopic Simulation Model 

Macroscopic simulation models consider traffic flow as composed of platoons of 

vehicles, i.e. vehicles with common characteristics are treated as a homogeneous group. 
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They are mainly developed for evacuation planning purpose. Most macroscopic 

simulation models are based on dynamic network flow approach (Sheffi et al., 1982; 

KLD, 1984; Hobeika and Jamei, 1985; Hobeika and Kim, 1998). In the context of 

emergency evacuation, macroscopic simulation models are often used to analyze the 

traffic conditions, estimate evacuation times, and generate optimal evacuation routes etc. 

NETVAC (Network Emergency Evacuation), developed by Sheffi et al. (1982), is 

considered as the first evacuation planning simulation model. NETVAC is used for 

simulating traffic flow patterns and estimating clearance times during emergency 

evacuations. NETVAC allows the analyst to customize the degree of driver compliance 

on an intersection specific basis under evacuation conditions. NETVAC also supports 

dynamic route selection by dynamically adjust the turning movements at each simulation 

interval according to the traffic conditions. However, the model was specifically designed 

for nuclear plant accident evacuation, which means the evacuation starts from a single 

point, and thus all the movements are directed radially outward from the single point 

rather than a more general direction as a hurricane evacuation. 

IDYNEV (Interactive Dynamic Network Evacuation) is a macroscopic evacuation 

simulation model developed by KLD Associates, Inc. for Federal Emergency 

Management Agency (FEMA). It is used for estimating evacuation times in nuclear plant 

accident evacuation. IDYNEV integrates three different models: (a) a deterministic traffic 

simulation model; (b) an equilibrium traffic assignment model; and (c) a traffic capacity 

model for intersection approaches (KLD, 1984). The traffic simulation model is capable 

of rerouting the evacuation traffic if the routes are too congested. Like NETVAC, 
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IDYNEV is designed particularly for nuclear plant accident evacuation and is unable to 

handle large-scale evacuation such as hurricane evacuation. 

Hobeika and Jamei (1985) developed a macroscopic simulation model, 

MASSVAC (Mass Evacuation), for mass evacuation. MASSVAC uses All-or-Nothing 

algorithm and Dial’s algorithm (Dial, 1971) for dynamic traffic assignment. Traffic 

volumes are updated during each time interval as new traffic load onto the system. The 

probability of a particular path being selected is calculated by the product of the 

probability that each link in the path is used. To improve the evacuation performance, 

Hobeika and Kim (1998) updated MASSVAC by incorporating user equilibrium (UE) 

assignment algorithm. 

HURREVAC (Hurricane Evacuation) (FEMA, 2013) is a storm tracking and 

decision support tool developed specifically for hurricane evacuation. HURREVAC 

combines National Hurricane Center's Forecast Advisories with data from various state 

HES (Hurricane Evacuation Studies) to estimate the time required to evacuate an area, 

which assists the local emergency management agency in determining the most 

appropriate evacuation decision time. 

VISUM is a macroscopic simulation software system for traffic analyses. It is 

used to simulate evacuation plans (Schomborg et al., 2011; ARCADIS, 2011; ARCADIS, 

2012), especially when the maximum evacuation time is required. ARCADIS Inc. (2011, 

2012) performed VISUM simulations to forecast evacuation times in different scenarios. 

The VISUM network includes designated evacuation routes plus backup routes in order 

to accurately reflect the traffic conditions during an evacuation. The potential impacts of 

the population growth on evacuation time were also analyzed. 
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Microscopic Simulation Model 

Microscopic simulation models focus on modeling of individual vehicle behavior 

and interaction among vehicles. Microscopic simulation models are generally based on 

car-following models. They are often used for modeling traffic with complex behavior in 

an emergency evacuation, such as contra-flow (Lim, 2003), traffic signal preemption 

(Zhang, 2009), and transit operations (Wen, 2012). Microscopic models are usually 

resource intensive and thus are only implemented in small networks. 

CORSIM (Corridor Simulation) (McTrans, 2014) is a microscopic traffic 

simulation software package for simulating urban street and freeway traffic systems. It is 

an integration of two separate microscopic simulation models, NETSIM (Network 

Simulation) for modeling surface streets, and FRESIM (Freeway Simulation) for 

modeling freeways. NETSIM, which is the successor of UTCS-I (Urban Traffic Control 

System) in the 1970s, keeps track of each individual vehicle, including detail 

characteristics relating to the vehicle within quite complex urban networks. NETSIM 

provides simulation results in aggregated level. Urbanik and Desrosiers (1981) used 

NETSIM model to estimate evacuation time for a nuclear plant evacuation. Lim (2003) 

and Theodoulou et al. (2004) utilized CORSIM to simulate hurricane evacuation with 

contra-flow strategy. Zou et al. (2005) applied CORSIM simulation for evaluating six 

evacuation plans for Ocean City hurricane evacuation. Tagliaferri (2005) performed both 

CORSIM and VISSIM simulations to investigate the effects of the lane reversal plan on 

hurricane emergency evacuation. ORNL (Oak Ridge National Laboratory) (Bhaduri et 

al., 2006) developed OREMS (Oak Ridge Evacuation Modeling System), which is an 

integration of a CORSIM simulation model and a GIS model, to analyze and evaluate 
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large-scale emergency evacuations, conduct evacuation time estimation, and develop 

evacuation plans. Zhang et al. (2009) proposed a CORSIM model for simulating 

emergency vehicle operations, including traffic signal preemption, movement on 

shoulder and red lights, in a hurricane evacuation. NETSIM is also capable of modeling 

transit operations. Wen et al. (2012) used CORSIM simulation with RTE to simulate 

transit signal priority and connected vehicle within a large network with over 150 

signalized intersections. The impacts of transit signal priority and connected vehicle on 

transit emergency evacuations were investigated. 

Jha et al. (2004) utilized MITSIM (Microscopic Traffic Simulator), which is the 

core component of MITSIMLab (MITSIM Laboratory), to evaluate emergency 

evacuation plans for Los Alamos National Laboratory. MITSIM was used as the 

microscopic traffic simulator to model the emergency evacuation at the operational level. 

A probabilistic route choice model was implemented to capture drivers' route choice 

decisions. 

VISSIM (PTV, 2009) is a microscopic, time-step, and behavior based simulation 

model developed for modeling traffic flow, including private vehicles, trucks, transits, 

railroads, and pedestrians in detail. It has been widely used for evacuation simulation 

(Chiu et al., 2005; Yuan et al., 2006; Williams et al., 2007; Edara et al., 2010). Han and 

Yuan (2005) simulated a nuclear power plant evacuation in VISSIM. Dynamic traffic 

assignment was implemented in the simulation. Yuan et al. (2006) used VISSIM and 

DYNASMART_P to validate their ODE (One-Destination Evacuation) concept which 

modified the network by linking each real-world destination point to one common 

“dummy destination point” with “dummy links”. ODE could avoid steps of demand 
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distribution and focus on solving a one-destination dynamic traffic assignment problem. 

Williams et al. (2007) applied lane reversal operations in the simulation of a hurricane 

evacuation in VISSIM.  The impacts of the lane reversal plan, especially at the 

contraflow termination point, were evaluated. Edara et al. (2010) built a large-scale 

hurricane evacuation network in VISSIM. Simulations were performed to evaluate the 

evacuation routes and locate the major bottlenecks in the network. 

TRANSIMS (Transportation Analysis and Simulation System) is an integrated 

simulation tool specially designed for intermodal transportation analysis, including transit 

service (Nagel et al., 1997). It has been used for large-scale multimodal evacuation 

modeling in recent years (Wolshon et al., 2009; Naghawi, 2010; Wolshon and Vinayak, 

2012). Naghawi (2010) used TRANSIMS to simulate transit-based evacuation strategies. 

A TRANSIMS application for New Orleans transit evacuation simulation was developed. 

Eight evacuation scenarios with varying conditions, such as alternative transit routes and 

network loading rate, were generated for evaluation. Network average travel time and 

total evacuation time were used to measure the effectiveness of proposed transit 

strategies. Wolshon et al. (2009) developed a TRANSIMS application for hurricane 

evacuation modeling in New Orleans. The application is capable of modeling multimodal 

mass evacuations at microscopic level. A TransCAD network of the New Orleans region 

was imported into TRANSIMS. The simulation results were used to evaluate various 

operational strategies and identify the network bottlenecks. 

Mesoscopic Simulation Model 

Mesoscopic simulation models compromise between microscopic simulation 

models and macroscopic simulation models. They simulate individual vehicles with high 
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level of detail, but describe their activities and interactions based on aggregate 

relationships. The aggregation mitigates calculative burden and lessens computation time. 

Typical applications of mesoscopic simulation models in the context of emergency 

evacuation are reviewed as follows. 

Dynasmart-P (Dynamic Network Assignment-Simulation Model for Advanced 

Roadway Telematics - Planning version), which is the planning version of Dynasmart 

(Mahmassani et al., 1994), utilizes mesoscopic models to represent traffic interactions. 

Dynasmart-P supports transportation network planning and operation analyses through 

the use of simulation-based dynamic traffic assignment. It is capable of handling large-

scale urban traffic network with up to 89999 nodes (Mahmassani et al., 2004). In recent 

years, it has been promoted to incident management strategies evaluation (Kwon, 2004; 

Yuan et al., 2006; Naser and Shawn, 2010). Kwon (2004) used Dynasmart-P simulations 

to evaluate emergency evacuation strategies on a large-scale network. Dynasmart-P 

simulations were developed for a hypothetical emergency evacuation in downtown 

Minneapolis, Minnesota. The model was calibrated using loop detection data. Alternative 

emergency evacuation strategies in terms of different network configurations were 

proposed and evaluated. However, the assumption that all the drivers are aware of the 

network configuration changes and can adjust their routes accordingly is not realistic 

under real emergency situations. Naser and Shawn (2010) developed a Dynasmart-P 

application integrated with Cube-Voyager software (Citilabs, 2013), which provided OD 

matrix for Dyansmart-P, to model flood evacuation at regional level. Different 

hypothetical emergency scenarios with varying flood locations, levels, and warning 

times, were modeled using the Fargo-Moorhead metropolitan area data. Traffic controls 
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were modified to facilitate the evacuation operations. The outputs of the Dynasmart-P 

simulation were used to estimate the evacuation time, measure the effectiveness of the 

modified traffic control, and evaluate the system parameters, such as driver compliance 

and trip loading rate.  

DynusT (Chiu et al., 2010) is another version of Dynasmart developed for real-

time analysis. It have been implemented in various evacuation studies (Chiu et al., 2008; 

Zhang et al., 2009; Zheng et al., 2010; Songchitruksa et al., 2012). Chiu et al. (2008) 

deployed and assessed the contra-flow operation in the Central Texas Evacuation 

network (CTE) in DynusT. The simulation results indicated that the contra-flow 

operation led to about 14% travel time savings for all evacuees. Songchitruksa et al. 

(2012) created DynusT simulations for assessing the performance of alternative 

evacuation strategies, including partial contra-flow and “evaculane”, on which evacuation 

traffic could use the outside paved shoulder as an additional traveling lane during an 

emergency evacuation, in the context of a hurricane evacuation in Houston, TX. The 

evaluation results indicated that the “evaculanes” on I-10 and US-290 could provide 

sufficient capacity to handle high evacuation demand on both routes without the 

contraflow operation. In addition, the contra-flow plan for I-45 was proved to be 

adequate to handle high evacuation demand in lieu of fully implemented contra-flow 

operation. Wang et al. (2014) incorporated contra-flow with VMS (Variable Message 

Signs) in a hypothetical emergency evacuation. DynasT simulations were developed to 

evaluate the performance of the strategies. The simulation results demonstrated the 

combination of contra-flow and VMS improved the evacuation performance more 

effectively than using only one or none of the two strategies. 
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Optimization-Based Evacuation Model 

Simulation-based evacuation models only answer “what if” questions about the 

evacuation system change in a virtual environment. The decision-making procedure is 

limited by the candidate evacuation plans. In practice, the candidate evacuation plans are 

usually proposed based on experience, which could deviate far from the optimal 

evacuation plan especially in the case of an emergency evacuation. Consequently, the 

simulation-based evacuation models require tremendous amount of time for calibration. 

As an alternative paradigm, optimization-based evacuation models are capable of 

identifying optimal evacuation strategies in a systematic, self-driven manner. 

Optimization-based evacuation models are typically written in a mathematical 

programming form with an objective of minimizing the total evacuation time or 

maximizing the network traffic throughput. A set of constraints which describe the 

objects relationships and the system limitations are formulated to define the solution 

space. However, optimization-based evacuation models usually need much longer 

computation time than simulation model and thus are only applied to simplified 

representation of evacuation problems. 

Liu et al. (2006) proposed a two-level integrated optimization model to generate a 

set of evacuation plans for large-scale network evacuation planning. A revised cell 

transmission formulation, which allows cells in different sizes being connected 

arbitrarily, was proposed to model the traffic flow conservation and propagation. The 

objective of the high level optimization is to maximize the total number of vehicles 

entering the destinations within the specified evacuation duration. The low level of 

optimization aims to minimize the total travel time including vehicles’ waiting time. The 
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system parameters were optimized separately in those two levels. For example, the 

demand distribution is optimized in the high level optimization while the turning 

percentages at certain critical intersections are optimized in the low level optimization. 

Finally, the optimized system parameters were implemented in CORSIM simulations for 

evaluation. 

Cova and Johnson (2003) proposed a lane-based routing plan to reduce the traffic 

delay at intersections during an evacuation. The lane-based routing plan was modeled as 

the minimum cost flow problem with the objective of minimizing total travel distance. 

The other objective of the model is to reduce conflicts at intersections. The traffic flow 

was regulated so as to eliminate crossing conflicts at some critical intersections and 

minimize lane changing along multi-lane arterials. In practice, such constraints can be 

readily implemented with emergency personnel directions and installations of portable 

traffic barriers and road signs at intersections. These two objectives of reducing travel 

distance and reducing conflicts at intersections are usually conflict and hence a parameter 

for trade-off between these two objectives was set up based on the traffic volumes. The 

authors used a node-per-lane mathematical graph to represent lane connectivity. This 

network representation is a finer level of geographic detail than typical node-per-

intersection network representation because the latter may conceal important traffic flow 

details that might cause delays (Ziliaskopoulous and Mahmassani, 1996). The lane-based 

routing model was formulated as a MIP solved by CPLEX. Paramics simulations were 

developed to evaluate the proposed lane-based routing plans under different scenarios. 

Kim et al. (2008) developed a macroscopic network flow model to optimize 

contra-flow during evacuations. The network is represented using a mathematical graph 
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with fixed capacity and no partial contra-flow. The authors demonstrated the NP-

completeness of the contra-flow problem. Since the computational burden of find the 

optimal solution increases exponentially with the growth of the problem size, a parameter 

named “Overload Degree”, which addressed two critical factors, the traffic volume and 

bottleneck capacity, affecting the computation time, was proposed to identify the problem 

size. Considering the trade-off between the solution optimality and computational 

efficiency, three solution algorithms were proposed to solve the contra-flow problem with 

different problem size. An integer programming approach was suggested to solve the 

contra-flow problem with low overload degree. A greedy heuristics, which applies 

contra-flow based on the link congestion level, was used to solve the contra-flow problem 

with medium overload degree. For the contra-flow problem with high overload degree, a 

bottleneck relief algorithm was developed to solve the problem by iteratively applying 

contra-flow to the system bottleneck. 

Peeta et al. (2011) discussed the dynamic routing problem in the context of 

emergency evacuation. The study focuses on identifying the paths for evacuating the 

distressed population from the affected area and delivering relief supplies to the affected 

area. The first task is accomplished using a K-shortest paths routing module. The K-

shortest paths routing module can generate K shortest paths using K-label-setting 

algorithm. It provides flexible options for the evacuation managers to distribute 

tremendous evacuees to the K shortest paths so that if a route is not accessible due to 

interruptions, other candidate routes are still available. The resource delivery task is 

solved by a multi-stop routing module. This resource delivery problem is considered as 

multiple shortest path problems when the stops have fixed sequence. However, if there is 
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no fixed order for stops, then the resource delivery problem is converted to classical 

traveling salesman problem, which is NP-hard. Both modules are implemented on an 

ArcGIS platform which has an ArcToolbox for solving these two problems. The system 

is also integrated with TrafficWise, which is a web-based traffic information system 

hosted by INDOT (Indiana Department of Transportation), for real time traffic 

information updates. 

Stepanov and Smith (2009) designed a system for traffic assignment with 

stochastic arrivals in the context of an emergency evacuation. The system firstly 

generated K outgoing paths for each source in the O-D matrix using K-shortest path 

algorithm. This procedure is executed in the ArcGIS module. To prevent blocking, a 

maximum arrival rate on a link is calculated on the condition that the blocking probability 

on the link will not exceed a threshold value. Each link in the network is defined as an 

M/G/c/c state dependent queuing system. Given the maximum arrival rate, the expected 

travel time on a link can be calculated using M/G/c/c queuing delay model. The 

optimization module of the system is a multi-objective integer programing model which 

aims to minimize the total travel distance as well as the total clearance time. The 

evacuation demand at each source is distributed optimally to the K shortest paths 

considering the two objectives simultaneously. After generating the evacuation plan, a 

simulation model named MGCCSimul was applied to evaluate it. The MGCCSimul also 

considers a link as an M/G/c/c state dependent queue with Poisson arrivals, general 

service rate, and limited capacity. The model dynamically updates the service rate on 

each link and outputs performance measures, i.e. total clearance time and total travel 

time. 
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Vehicle Routing Problem 

The vehicle routing problem was first introduced by Dantzig and Ramser (1959), 

as a generalization of the well-known traveling salesman problem. The VRP consists of 

finding a set of optimal routes for a fleet of vehicles to service a set of customers, 

subjected to certain constraints. The classical VRP with its variants, such as the 

Capacitated Vehicle Routing Problem (CVRP), the VRP with time windows (VRPTW), 

and the VRP with Pickup and Delivery (VRPPD), have been extensively studied for over 

50 years. Current exact algorithms are able to solve the CVRP with a size limit of 50 – 

100 customers depending on the customers’ distribution and the response time 

requirement. However, in terms of dynamic vehicle routing problem, most of studies 

focus on heuristic algorithms and no existing exact algorithms have been successfully 

applied to the vehicle routing problem in the context of an emergency evacuation. 

Exact Algorithms 

Exact algorithms to solve the VRP include the branch-and-bound, the cutting 

plane, column generation, and the branch-and-price algorithms. A brief review of the 

exact algorithms is provided in this section. 

The column generation algorithm is an efficient algorithm for solving large scale 

linear programs. It has been widely applied to the VRP and its variants by many 

researchers. Agarwal et al. (1989), Hadjiconstantinou et al. (1995), and Bixby (1998) 

developed column generation algorithms for general VRP. Desrochers et al. (1992) 

applied column generation algorithm on the VRPTW. Jin et al. (2008) proposed a column 

generation approach to solve the VRP with split delivery (VRPSD). The basic idea of 

column generation is to iteratively generate a subset of columns and push them into the 
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basis such that the inclusion potentially improves the objective function. The column 

generation algorithm can be combined with the branch-and-bound algorithm, which is 

called branch-and-price algorithm. The branching occurs when no columns can enter the 

basis and the LP solution is not integer.  

Desrochers et al. (1992) presented a dynamic programming based optimization 

algorithm for the VRPTW. The VRPTW is formulated by a set covering form in which 

the path has not to be elementary. The LP relaxation of the SC model is solved by column 

generation. The pricing sub-problem, which is the Shortest Path Problem with Resource 

Constraints (SPPRC), is solved by a label correcting algorithm in which labels are created 

through a “pulling” process. Two sets of labels were generated for the states at each node. 

The first set of labels provides an upper bound while the second set of labels relates to a 

lower bound on the cost of a path associated with a state at each node. The algorithm 

computes the cost associated with a state at a node by progressive refinement of lower 

and upper bounds on its value. In addition, a 2-cycle elimination procedure was 

accomplished by a duplication of the labels. This procedure could tight the relaxed state 

space by eliminating all cycles of length two. The LP solution is then used in a branch-

and-bound algorithm to solve the integer SC model. The algorithm has a pseudo 

polynomial complexity. 

Feillet et al. (2004) proposed an exact algorithm for the Elementary Shortest Path 

Problem with Resource Constraint (ESPPRC). The algorithm is adapted from 

Desrochers’ (1988) label correcting algorithm. A new resource, which indicates if a label 

of a node is extendable to another node, is created to enforce the elementary path 

constraint, as proposed by Beasley and Christofides (1989). The label correcting method 
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is improved by introducing the new resource in the dominance rule. This method could 

decrease the number of states to be explored and hence reduce the computational 

complexity. The drawback of the method is that the complexity is strongly related to the 

graph structure, the number of the nodes, and the tightness of resource constraints. 

Righini and Salani (2008) developed a label setting algorithm for the ESPPRC. 

The traditional label setting algorithm is improved by two new methods. The first method 

is a bi-directional search with resources bounding in which states are extended both 

forward from a start node to its successors and backward from a destination node to its 

predecessors. Then all the forward states and backward states at a node are joined, subject 

to resource constraints, to make feasible routes. Therefore, states are not extended if at 

most half of the available amount of resources has been used. This method could 

effectively reduce the number of states in the solution space. The second method is a 

combination of bi-directional search with state space relaxation. In this algorithm, the 

state space is relaxed to allow cycles with length more than two. The path found from the 

relaxed state space is guaranteed to be feasible regarding to the resource constraints but it 

is not guaranteed to be elementary. They also provided branch-and-bound strategies to 

eliminate cycles in order to solve the ESPPRC to optimality. 

The pricing sub-problem in the column generation scheme was also stated as 

Traveling Salesman Problem with Profits (TSPP) by Feillet et al. (2005) in a 

comprehensive survey. TSPP is considered as a bi-criteria TSP with two opposite 

objectives, one is to maximize the benefits collection at each vertex, which push the 

salesman to travel, and the other one is to minimize the travel cost, which prevent the 

salesman from traveling. The two objects constitute the price of visiting a vertex. 
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Generally, TSPP is divided into three categories based on the way the two objectives are 

presented. (1) Profitable Tour Problem (PTP) by (Dell'Amico et al., 1995) in which both 

objective are combined in the objective function. (2) Orienteering Problem (OP) by 

(Golden et al., 1987) in which the travel cost is formulated as a constraint. (3) Prize-

Collecting TSP (PCTSP) by (Balas, 1989) in which the profits is stated as a constraint. 

Solution approaches for TSPP were summarized into three groups: (1) exact algorithms; 

(2) classical heuristics; and (3) meta-heuristic procedures. The performance and 

applicability of the approaches were identified for different TSPP applications. 

Pradhan and Mahinthakumar (2012) designed parallel computing technique for 

solving shortest path problem. Two graph search algorithms, Dijkstra algorithm and 

Floyd-Warshall algorithm, are implemented in the parallel computing framework. The 

Floyd-Warshall algorithm is decomposed in two ways for parallel computing. (a) The 

task of finding all-pair shortest path is decomposed into multiple single source shortest 

path problems. These smaller tasks are assigned to each processor. (b) The input distance 

matrix is decomposed by using a striped row-wise decomposition in addition to (a). Only 

a portion of the distance matrix (rows) is allocated to each processor. Each processor 

solves a single source shortest path problem for the sources corresponding to the assigned 

rows. Communications is accomplished by using the MPI (Message Passing Interface) 

library.  

Meta-heuristics 

Alba and Dorronsoro (2004) applied Cellular Genetic Algorithm (cGA), which is 

a subclass of traditional Genetic Algorithm (GA), to solve basic VRP with the objective 

of minimizing travel time. The most significant difference between cGA and GA is that 
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the former constructs the population by using the concept of neighborhood, so that 

individuals can only interact with their neighbors in the population. Chromosomes, which 

constitute the population, are structured in a two dimensional toroidal grid. Each 

chromosome is included in a sub-population, like a cellular, which contains the 

chromosome itself plus four neighborhood chromosomes from North, East, West, and 

South direction. Hence groups are overlapped in the toroidal and adjacent cellular share 

neighborhoods. cGA’s evolution, such as crossover, mutation, are operated within each 

cellular. The overlap of the neighborhood provides an implicit mechanism of migration. 

The best chromosomes spread more smoothly through the whole population that GA. 

cGA controls the dispersion of the best chromosomes by modifying the size of overlap. 

In addition to general GA evolution operations, local search techniques, including 2-Opt 

and λ-interchange, are performed to refine solutions. In comparison with Christofides and 

Mingozzi’s benchmarks, cGA is always capable of locating the optimum of the tested 

problems within shorter computation time. 

Schwardt and Dethloff (2005) developed a variant of Kohonen’s algorithm to 

solve a deterministic, single-depot, capacitated multi-vehicle routing problem. Kohonen’s 

algorithm was based on a neural network including two layers. Weights, which were 

Euclidean distances between nodes and customer demands, were assigned to the links 

between the layers. The neural network used self-organization approaches to construct 

the vehicles mapping and simultaneously generate feasible solutions to the location-

routing problem. 

Goel and Gruhn (2005) worked on real-life vehicle routing problem with 

randomly generated demands after planning starts. They considered a diversity of 
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practical constraints, such as time window restrictions, a heterogeneous vehicle fleet, 

vehicle compatibility constraints, etc. To cope with the complexities of the problem, they 

improved the Large Neighborhood Search method by using fast insertion methods as the 

search algorithm. Two insertion methods were developed. One is a sequential insertion 

method in which unscheduled transportation requests were randomly chosen and all 

feasible insertion possibilities were considered. The second one was auction method in 

which vehicles only considered the unscheduled transportation request with low 

incremental cost. The second method was used for the vehicle routing with time window. 

Dynamic Vehicle Routing Problem 

Creput et al. (2011) discussed a DVRPTW (Dynamic Vehicle Routing Problem 

with Time Window) application in a telemedicine system. The application is designed for 

medical emergency management. The application has the ability to handle emergency 

calls in real time. They developed an optimizer called Dynamic Optimization System 

(DOS) to solve the DVRPTW. The optimizer has a 2-level architecture. The top level 

implements a global meta-heuristic strategy to manage the lower level heuristic solvers. 

The lower level consists of several existing heuristics, such as 2-opt, local search, and 

neural networks, to solve a typical VRP. The main algorithm in the lower level is based 

on local search and self-organizing maps (SOM), which are embedded into an 

evolutionary algorithm framework. The main algorithm could handle new customer 

requests by neighborhood search, which costs significantly less computation time than 

traditional exact algorithms. 

Chen et al. (2006) proposed a dynamic model to for the DVRPTW. The dynamic 

model consists of a series of static vehicle routing problems over the planning horizon. 
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Column generation is implemented for solving the static problem at each decision epoch. 

Insertion based heuristic is used to generate new columns based on existing columns. 

However, the algorithm cannot prove that the optimal solution to the RMP (Restricted 

Master Problem) is also an optimal solution to the master problem because the pricing 

sub-problem is not guaranteed to be solved to completion using an insertion method.  

The random arrival of customer requests during the operation is considered as the 

most common dynamism in DVRP. Lund et al. (1996) measured the degree of dynamism 

using the ratio between the number of the random requests and the total number of 

requests in the operation. Larsen (2000) evaluated the degree of dynamism by the average 

of the disclosure time of the requests. Since all the pre-defined requests are known at the 

beginning of the operation, their disclosure time equals to 0. Obviously, the level of 

dynamism of a problem increases with the disclosure time of the random requests. Ichoua 

et al. (2007) defined the level of dynamism in the DVRP by two factors, the frequency of 

the new requests and the urgency of the new requests. 
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CHAPTER III 

MODEL DEVELOPMENT 

In this chapter, transit evacuation operations are analyzed at microscopic level. 

The development of a Capacitated Dynamic Vehicle Routing Problem with Pickup and 

Delivery model in the context of an emergence evacuation is discussed.  

Problem Statement 

Given a transportation network in which emergency evacuation is carried out, the 

dispatching of transit services resembles the Capacitated Dynamic Vehicle Routing 

Problem with Pickup and Delivery. The transit emergency evacuation process includes 

sending transit vehicles from the Coast Transit Authority (CTA) to the hurricane prone 

area to pick up evacuees, updating transit vehicle routes based on real-time evacuee and 

traffic information, and delivering evacuees to the designated shelters. The evacuee and 

traffic information are dynamic in nature. The CTA provides dial-a-ride service that 

allows evacuees to call in requesting on-site pickup over the whole evacuation process. 

The dispatcher doesn’t have any knowledge of future pickup requests. The information of 

a real-time pickup request, including its location and demand, become known from the 

moment it comes into the system. Then the problem is to assign the most appropriate 

vehicle to the new request. Routes are formed before evacuation but updated dynamically 

in response to real-time information updates, including new pickup request, travel time 
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change. Comparing to the static vehicle routing problem in which demands are known 

before the evacuation, the dynamic feature gives more freedom to the evacuees while, at 

the same time, bringing more challenge to transit agencies. 

Developing a Model 

The problem described above can be formulated as a special case of Capacitated 

Dynamic Vehicle Routing Problem with Pickup and Delivery. It consists of two types of 

problems: a) A static CVRPPD (Capacitated Vehicle Routing Problem with Pickup and 

Delivery) in the planning stage of an emergency evacuation; and b) A dynamic CVRPPD 

after the emergency evacuation starts. 

Basic CVRPPD Model 

In the planning stage of an emergency evacuation, pre-registered evacuees’ 

information, including their demands and locations, are known in advance. Despite of the 

dynamic factors, such as travel time fluctuations, the CVRPPD is assumed to be static in 

this stage. The classical CVRPPD generalizes the traveling salesman problem. Thus it is 

NP-hard. The CVRPPD is defined on a directed graph G = (V, A), where V is the set of 

vertices and A is the set of arcs. S denotes the set of depots. N denotes the set of pickup 

points and M denotes the set of shelters, both of which are considered as customers with 

pickup and delivery demands. Therefore the graph consists of N M S   vertices that 

V N M S . 

The set of arcs, A, represents direct connections among the vertices. A non-

negative cost cij is assigned to each arc  , i j A . Arc cost cij generally represents the 

travel time going from vertex i to vertex j, which corresponds to the shortest path from 
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vertex i to vertex j, and consequently the cost matrix satisfies the triangle inequality. 

Satisfying the triangle inequality, ciz + czj ≥ cij for all , ,i j z V , implies that any removal 

of pickup requests from a feasible route will reduce the route cost and any insertion of 

pickup requests to a feasible route will increase the routes cost. Using self-loop is not 

allowed by imposing ,  for all   iic i V . The graph is directed with asymmetric cost 

matrix. This is realistic especially in the case of an emergency evacuation where 

outbound traffic is usually much heavier than inbound traffic. 

There are certain restrictions imposed on the graph as shown in Figure 3.1. The 

restrictions are written in the form of i  j , where i and j denote the nodes which 

constitute a restricted link. For example, S M  restriction indicates that a vehicle 

cannot travel from a depot to a shelter, which means that a route has to pass at least one 

pickup point before ending at a shelter. Other restrictions including M M , which 

denotes a vehicle cannot travel among shelters, M N , which denotes a vehicle cannot 

travel from a shelter to a pickup point, and N S , which denotes a vehicle cannot travel 

from a pickup point to a depot, are added according to the real emergency evacuation 

situations. These restrictions theoretically turn the network into an incomplete graph 

where some of the arcs are restricted. These restrictions can be accomplished by 

assigning 0 to the decision variables corresponding to the usage of the restricted arcs in 

the model. An alternative way to represent these restrictions is to impose a very large 

positive value to the travel cost on restricted arcs. In this dissertation, the latter is used 

because it is easier to implement. 
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Each pickup point i has a deterministic non-negative demand di. It is assumed that 

di is less than or equal to the vehicle capacity. If di is larger than the vehicle capacity, the 

pickup point i will be divided into multiple pickup points, which coincide and have less 

demand than the vehicle capacity. For depots and shelters, their demands are fictitiously 

set to 0. There is also a fixed service time cs associated with each pickup point i. The 

service time represents the time needed for loading and unloading. The service time is 

included in the travel cost cij associated with each arc. Based on CTA’s experience, the 

service time at a pickup point is normally 2.5 minutes on average. The capacity of each 

shelter is assumed to be unlimited, which conforms to the actual situation. Therefore, any 

one of the shelters can accommodate all the evacuees in the network. 

A homogenous fleet of transit vehicles K with identical capacity Q services the 

pickup points and shelters. The fleet size is infinite. Q must be larger than or equal to the 

sum of all the demands on the route assigned to vehicle k. Overload is not permitted. 

Each pickup point is serviced exactly once. The service includes scheduled pickup for 

registered evacuees, dial-a-ride to unregistered evacuees, and delivery to a designated 

shelter. A precedence constraint which regulates that all the pickup points must be served 

before any shelter is imposed on the route. The CVRPPD involves the design of a set of 

minimum cost routes that originate at a depot in S and terminate at a shelter in M after 

picking up all the evacuees. Practically, vehicles don’t have to be back to the depot after 

arrival at a shelter. However, in order to form a complete route, a set of dummy arcs 

linking from the shelters to the depots with zero travel cost are introduced to replace the 

original arcs. Then, each vehicle can go back to the depot after delivery at a shelter via 

the dummy link. In this case, a directed cycle is associated with a vehicle route. 
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Figure 3.1 A Simple Representation of Vehicle Routes  

 

Figure 3.1 shows a sample of vehicle routes in the network. The blue square 

denotes a depot. A vehicle starts from the depot and then picks up evacuees at the pickup 

points which are represented by the red dots. After pickup, the vehicle will deliver the 

evacuees to a shelter which is represented by the green triangle. The black solid line with 

arrow denotes the arc which forms a vehicle route. The black dotted line with arrow 

denotes the dummy link which connects a shelter to a depot. There is no cost associated 

with a dummy link. The red solid line with arrow denotes the arc which is restricted in 

the model. 
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For ease of reference, notations are summarized as follows. Particularly, the set of 

depots, S, contains only one element since the scope of this study is to solve the CVRPPD 

with single depot. 

G = A graph represents the transportation network. 

V = Set of vertices in G. 

A = Set of arcs in G. 

M = Set of shelters,  1,2, ,M m . 

N = Set of pickup points at the beginning of evacuation, 

 1, 2, ,   N m m m n . 

S = Set of depots of all vehicles,  0S . 

K = Set of a fleet of vehicles,  0,1,2, , ,K k . 

ijc  = Travel cost,  , i j A . 

id  = Demand at pickup point i,  i N . 

k
iu  = Vehicle k’s load after visiting pickup point i,  i N , k K  . 

Q = Vehicle capacity. 

The CVRPPD is mathematically formulated as an integer linear programming 

model by (3.1) – (3.12). The set of decision variables is defined as . For each arc 

 , i j A , the integer variable k
ijx  indicates whether (i, j) is traversed by vehicle k in the 

solution.  

1,  if vehicle  travels directly from vertex  to vertex ,  
   ,  
0,  other

,  
wi e

,
s

 k
ij

k i j
i V j V i j k Kx    



  





 

k
ijx
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\

min k
ij ij

k K i V j V i
z c x

  

  (3.1) 

 
\

1,  k
ij

k K j V S
x i N

 

     (3.2) 

 0,  ,  ,  ,  k k
iz zj

i V j V
x x z V z i z j k K

 

          (3.3) 

 1,  ,  k
ij

j N
x i S k K



     (3.4) 

 1,  k
ij

i N j M
x k K

 

    (3.5) 

 1,  ,k
ij

i M
x j S k K



     (3.6) 

 0,  , ,k
ijx i S j M k K       (3.7) 

 0,  , ,k
ijx j S i N k K       (3.8) 

 0,  , ,k
ijx i M j N M k K        (3.9) 

 ,  , ,  ,  ,    k k k
i j ij j i ju u Qx Q d i j N i j k K such that d d Q            (3.10) 

 ,  ,  k
i id u Q i N k K       (3.11) 

  0,1 ,  , ,k
ijx i j V k K      (3.12) 

The objective function (3.1) is to minimize the total travel cost. The in-degree 

constraints (3.2) ensure that each pickup point is visited once and only once. Route 

continuity is enforced by the constraints (3.3) as once a vehicle arrives at a pickup point, 

it has to leave the pickup point. The constraints (3.4), (3.5), and (3.6) indicate that each 

vehicle leaves an depot exactly once; after picking up all the evacuees on its route it has 

to visit a shelter once and only once; and finally travels back to the depot, respectively. 
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The constraints (3.7), (3.8), and (3.9) are connectivity constraints indicating that the arcs 

from the a depot to a shelter, arcs from a shelter to a pickup point, arcs among shelters, 

and arcs from a pickup point to a depot, are restricted, respectively. The constraints (3.10) 

and (3.11) are called polynomial cardinality constraints (Christofides et al., 1979) that 

impose both sub-tour elimination and the vehicle capacity requirements. Constraints 

(3.12) are the integrality constraints. 

Dantzig-Wolfe Decomposition 

For integer linear programming, there are three main indicators of the difficulty, 

the number of constraints, the number of variables, and the integrality gap. For the 

CVRPPD model represented by (3.1) – (3.12), obviously it has an exponential number of 

constraints which make it difficult to solve. Hence, it is desirable to use the knowledge 

about the problem structure to reformulates the integer program into another equivalent 

problem which is more manageable for the Simplex Method. Dantzig–Wolfe 

decomposition is originally developed by George Dantzig and Philip Wolfe (1960) for 

solving large integer program with special structure. The decomposition, which is closely 

connected to column generation, is applicable to an integer program with a block angular 

form as shown in Figure 3.2.  
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Figure 3.2 The Structure of an Integer Problem with Block Angular Form 

 

The constraints of an integer problem with block angular structure are typically 

divided into two groups. First, a set of constraints are identified as connecting constraints 

in which variables are correlated. The sub-matrices of connecting constraints are 

represented by ,  1,2,3,iA i  . Second, the remaining constraints are grouped into 

independent blocks of constraints such that if a variable has a non-zero coefficient in one 

block, the variable will not have a non-zero coefficient in another block. The sub-

matrices of independent blocks of constraints are represented by ,  1,2,3,iD i  . 

Consider an integer program (IP) with a block angular form as follows: 

 min i i

i B
c x



  (3.13) 

 1
i i

i B
A x b



  (3.14) 

 2,  i i iD x b i B    (3.15) 
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  (3.16) 

Where, B is the set of blocks and  is the |i| dimensional domain of non-

negative integers. Constraints (3.14) are the connecting constraints where the blocks 

depend on each other. Constraints (3.15) are |B| independent blocks of constraints. 

Constraints (3.16) are the integrality constraints. Constraints (3.15) and (3.16) can be 

combined into the set Xi, which redefine the domain of xi. 

  (3.17) 

Assuming that the set iX  is a finite integer set, every point xi can be presented as 

a convex combination of its extreme points (Minkowski-Weyl Theorem) such that, 

 ,  
iW

i i i
w w

w
x x i B    (3.18) 

 1,  
iW

i
w

w
i B     (3.19) 

  0,1w   (3.20) 

Where, iW  is the set of extreme points in the domain of iX  and w is an extreme 

point in iX . w  is binary variable. Substitute ix  into the original IP. Then the IP master 

problem (IPM) is obtained. 

 min
iW

i i i
w w

i B w
c x



 
 
 

   (3.21) 
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 1

iW
i i i

w w
i B w

A x b


 
 

 
   (3.22) 

 1,  
iW

i
w

w
i B     (3.23) 

  0,1 ,  i
w i B     (3.24) 

The decomposition of the IP into the IPM decreases the number of constraints but 

increase the number of variables exponentially. Define that ,  iA i B  are matrices of size 

1 1
iu v  and ,  iD i B  are matrices of size 2 2

i iu v . Table 3.1 shows the number of 

variables and constraints variation before and after the decomposition. 

Table 3.1 Number of Variables and Constraints Before and After Decomposition  

Formulation Number of Variables Number of Constraints 

IP 1
i

i B
v



  
1 2

iu u  

IPM 
i

i B
W



  
1u B  

 

Table 3.1 indicates that the decomposition reduces the number of constraints from 

1 2
iu u  to 1u B  since there is only one constraint for each of block in B after 

decomposition. However, the number of variables may increase exponentially after 

decomposition. For example, assuming that block i is an unit cube, the domain of xi is 

. Then, after decomposition the number of variables becomes 2|i| 

comparing to |i|. So the decomposition redirect the number-of-constraint difficulty 

towards the number-of-variable difficulty. 
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For large scale IP, the decomposed model is too large to consider all the variables 

explicitly. Since for the integer programs solved by the simplex algorithm, most columns 

are inactive at each step. In such a scheme, a RMP formulation, which contains the 

currently active columns, iteratively utilizing sub-problems to generate columns for entry 

into the active columns set, is applied to the IP.  

Column Generation Model 

Since it is extremely difficult to consider all the variables explicitly when the 

problem size is large, column generation approach, which represents a generalized 

application of Dantzig-Wolfe decomposition (DWD), is proposed to solve large integer 

problems by working with only a subset of variables. The column generation approach is 

very flexible that the algorithm can be early terminated when an acceptable lower bound 

is obtained, which is suitable for real time applications. 

Master Problem Model 

The column generation is based on a master problem and sub-problem structure. 

For the CVRPPD problem defined through (3.1) – (3.12), the constraints (3.2) are 

considered as the linking constraints in a DWD scheme which connect the vehicle routes 

while the remaining constraints (3.3) – (3.12) are associated with individual vehicle. The 

constraints (3.3) – (3.12) define the domain of individual vehicle route generation, which 

is the sub-problem. Let Rk be the set of feasible routes traveled by vehicle k and r 

represents an elementary route in Rk. Let k
ijrx be a binary variable defined as follows. 
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1,  if vehicle  travels directly from  to  on pa

0,  otherwise

th ,  
   ,  ,  ,  ,  k

ijr
k

k i j r
i V j V i j r R k Kx     



   


 



 

Each variable k
ijx  in the IP can be represented by a combination of k

ijrx . The 

decision variable k
ijx  is rewritten by (3.25) – (3.27). 

 ,  ,  ,  
k

k k k
ij ijr r

r R

x x y k K i V j V


        (3.25) 

 1,  
k

k
r

r R

y k K


    (3.26) 

  0,1 ,  ,  k k
ry r R k K      (3.27) 

Where, k
ry  is binary variable that represents whether vehicle k travels on path r. 

The cost of route r, k
rc , and the number of times a pickup point i is visited by vehicle k on 

route r, k
ira  are defined as, 

 
,

,  ,  k k k
r ij ijr

i j V
c c x r R k K



      (3.28) 

 
\

,  ,  ,  r r k
ik ijk

j V i
a x r R k K i V



        (3.29) 

Substitute k
ijx  and ijc  in (3.1) and (3.2) using (3.25) – (3.29). The reformulated 

CVRPPD master problem is shown by (3.30) – (3.33). 

 min
k

k k
r r

k K r R

c y
 

  (3.30) 

 1,  
k

k k
ir r

k K r R

a y i N
 

    (3.31) 
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 1,  
k

k
r

r R

y k K


    (3.32) 

  0,1 ,  ,  k k
ry r R k K      (3.33) 

Since the fleet of vehicles is homogenous, the travel cost is only associated with 

the arc, such that k
r rc c  for all vehicle k. The route sets kR R  for all vehicle k. 

Therefore, it is possible to eliminate the index k by aggregating vehicle k’s parameters on 

route r. The revised model is presented as follows. 

 : min r r
r R

MP c y


  (3.34) 

 1,  ir r
r R

a y i N


    (3.35) 

  0,1 ,  ry r R    (3.36) 

Now, the arc-based CVRPPD model has been successfully converted to a route-

based Set Partitioning (SP) model (Balinski and Quandt, 1964). Equations (3.34) – (3.36) 

constitute the master problem of the SP model. Notation air is binary variable that equals 

to 1 if vertex i is visited by route r and equals to 0 otherwise. Decision variable yr is 

binary variable that equals to 1 if route r is used in the optimum solution and equals to 0 

otherwise. Constraint (3.35) defines that each pickup point i is covered by one and only 

one route r in the routes set R. The master problem is usually relaxed to a Linear Master 

Problem (LMP) by replacing the integrality constraint (3.36) with  0 1 ,  ry r R  ， . 

The columns represented by the decision variables correspond to the feasible routes. 

Since the number of columns, |R|, exponentially increases with the problem size, it is not 

practical to explicitly enumerate all feasible routes and solve the master problem as an 



www.manaraa.com

 

41 

integer programming problem for all but very small sized problem. For example, a 

network with n customers has theoretically e(n!) elementary routes when n is sufficiently 

large. The appealing idea to overcome this difficulty is to work with only a small subset 

of variables first and then generate new variables as needed. The master problem that 

consider only a subset of variables is so called RMP. The linear relaxation of the RMP 

(LRMP) is represented by (3.37) – (3.40). The special structure of the SP model results in 

a tighter linear programming relaxation than that of the arc-based CVRPPD model. 

 
'

: min r r
r R

LRMP c y


  (3.37) 

 
'

1,  ir r
r R

a y i N


    (3.38) 

  0 1 ,  'ry r R  ，  (3.39) 

 'R R  (3.40) 

Where, R’ is a subset of R. The objective of the RMP is to find a set of optimum 

cost routes within R’ to service the pickup points. In the form of a linear relaxation of the 

RMP, each decision variable yr represents the number of times the path r is used in the 

optimum solution. The decision variable yr is not necessarily integer. Actually it is 

possible to be any real number in the interval [0, 1]. 

Instead of the SP model in which each pickup point is visited exactly once, 

Desrochers et al. (1992) presented a set covering model which no longer requires the 

routes in R to be elementary. In the SC model, ira  represents the number of times a 

pickup point i is visited by route r. It can take any positive integer values, not just binary 

value. Hence a new constraint (3.41) is proposed to replace constraint (3.38). 
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'

1,  ir r
r R

a y i N


    (3.41) 

The SC model provides a lower bound to the SP model. Any feasible solution to 

the SP model is also feasible to the SC model. On the other hand, any feasible solution to 

the SC model may be converted to a feasible solution to the SP model. If a SC model’s 

solution is infeasible to the SP model, this means one or more pickup points are visited 

more than once. The excessive visits, which make the solution infeasible to the SR 

model, may be eliminated by simply removing the revisited pickup point in a route and 

applying a shortcut between the upstream pickup point and the downstream pickup point. 

Since the cost matrix satisfies the triangle inequality, this conversion would not increase 

the cost of the solution.  

Although the relaxation of (3.38) yields a weaker lower bound than that of the SP 

model because of the existence of non-elementary routes in R, the SC model is still more 

beneficial than the SP model. First, the SC model is numerically more stable than the SP 

model especially in the environments involving many customers on a same route 

(Desrochers et al., 1992). Second, the linear relaxation of the SC model is easier to solve 

than the SP model. Computation results by Jin et al. (2008) indicate that the SC model 

improves the speed of column generation.  

Since the number of all feasible routes in a CVRPPD instance increases 

exponentially with the problem size, explicitly enumerating all the feasible routes is not 

an option for large size CVRPPD. Therefore the column generation based approach is 

applied to solve the problem. One of the key steps in column generation is to design a 

sub-problem model for generating columns into R’ so that R’ is expanded progressively 

towards the optimum solution. 



www.manaraa.com

 

43 

Sub-Problem Model 

Every linear programing problem has an associated dual linear programing 

problem. For the CVRPPD, the LRMP is referred to as a primal problem. Let 

 1 2 ', , ,r Ry y y y  be the optimal solution to the LRMP. It is necessary to identify 

whether yr is also an optimum solution to the LMP.  

Let  1 2 | |, , , R     be the set of dual variables associated with (3.41) and 

 1 2, , , n     be the dual optimal solution with respect to yr. The dual of the linear 

relaxation of the master problem (LRMPD) is represented as follows. 

 : max i
i N

LRMPD 


  (3.42) 

 ,  'ir i r
i N

a c r R


    (3.43) 

 0,  i i N     (3.44) 

Clearly   satisfies constraints (3.43) for all 'r R . Hence if we can prove that   

satisfies constraints (3.43) for all r R ,   is optimum for the LMPD and thus ry  is 

optimum for the LMP according to the duality theorem (Boyd et al., 2009). Instead, if 

there is a route ,  r r R  that violates the constraints (3.43), the current   is not optimum 

for LMPD. The corresponding route r, which causes the violation, can be added into 'R  

of the LRMP. The LRMP is then solved again. This process repeats until no route 

violating constraints (3.43) can be found (See Figure 3.3). At this point, the optimum 

solutions, y and  , are found for the LMP and LMPD, respectively. 



www.manaraa.com

 

44 

 

Figure 3.3 Columns Set Augmentation 

 

Figure 3.3 illustrates the relationship between the LRMP and the LMP in terms of 

the number of columns. The first row of Figure 3.3 shows the complete set of columns. 

The rest of rows demonstrates how the columns set is augmented towards the optimum 

solution for each iteration of the column generation process.  

Let rc  be the reduced cost of a route r. rc  is formulated as follows. 

 ,  r r ir i
i N

c c a r R


     (3.45) 

The sub-problem now is to find a feasible route r with negative rc . The sub-

problem must be able to efficiently price out all feasible routes, that is the reason it is 

usually called pricing problem. Then, the sub-problem decomposes into n identical 

problems, each of which is an elementary shortest path problem with capacity constraint 
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defined on the same graph as the master problem. The ESPPCC model is formulated as 

follows. 

 
\

min ij ij
i V j V i

c z
 

  (3.46) 

 1ij
i M j S

z
 

  (3.47) 

 1ij
i N j M

z
 

  (3.48) 

 1ij
i S j N

z
 

  (3.49) 

 0,  ,  ,  io oj
i V j V

z z o V o i o j
 

        (3.50) 

 0,  ,ijz i S j M      (3.51) 

 0,  ,ijz i N j S      (3.52) 

 0,  ,ijz i M j N M      (3.53) 

 ,  , ,  ,    i j ij j i ju u Qz Q d i j N i j such that d d Q          (3.54) 

 ,  i id u Q i N     (3.55) 

  0,1 ,  ,ijz i j V    (3.56) 

Where,  

ijc  = Cost of using arc (i, j), where 
2 2

ji
ij ijc c


    

ijz  is the decision variable that represents flow in the network. 

 1,  if arc ,  is used in the shortest path,  ,  ,
0,  otherwise

 
ijz

i j i V j V i j    
 

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The objective is to find the shortest path with negative reduced cost that covers a 

subset of pickup points ',  'N N N . Constraints (3.47) – (3.50) are flow conservation 

constraints. Constraints (3.51) – (3.53) are connectivity constraints. Constraints (3.54) – 

(3.55) are the sub-tour elimination constraint where iu  is the vehicle load after visiting 

pickup point i. Constraint (3.56) ensures the integrality. 

Since the ESPPCC is NP-hard (Dror, 1994), allowing cycles on the shortest path 

by relaxing some of the constraints, which changes the ESPPCC to the non-elementary 

Shortest Path Problem with Capacity Constraint (SPPCC) (Desrosiers et al., 1992; Irnich 

and Villeneuve, 2006), becomes imperative regarding the computational burden. 

However, allowing cycles on the shortest path will expand the columns set R and thus 

provide a weaker lower bound to the master problem. Therefore researches focused on 

compromising between complexity and quality. Beasley and Christofides (1989) imposed 

a new resource on each node indicating the vertices that has been previously visited so as 

to prevent cycles. Desrochers et al. (1992) provided a 2-cycle elimination algorithm 

which eliminates the cycles with i-j-i form. Irnich and Villeneuve (2006) extended the 2-

cycle elimination to k-cycle elimination where cycles containing k (or less) nodes are 

removed.  

CDVRPPD Model 

In a real-time scheme, a planning horizon [0, H] is applied to the evacuation 

process as illustrated in Figure 3.4, where H is the maximum evacuation time. H is evenly 

divided into /H l   intervals with equal length l. The length l is determined based on the 

problem size.  
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Figure 3.4 Time Intervals over the Planning Horizon 

 

Notations applied to the CDVRPPD model are as follows: 

tN  = Set of unfulfilled pickup points in t, t T  . 

tF  = Set of fulfilled pickup points in t, t T  . 

tE  = Set of new pickup points in t, t T  . 

tV  = Set of vertices in t, t t tV N S M L , t T  . 

tA  = Set of arcs in t, t T  . 

ijtc  = Travel time on arc  ,i j  in t,  , ti j A  , t T  . 

'ijtc  = Predicted travel time on arc  ,i j  in t,  , ti j A  , t T  . 

rtc  = Travel time of a feasible route r in t, tr R  , t T  . 

H = Maximum allowed evacuation time. 

l = Interval length. 

T = Set of intervals,  0 1 /, , , H lT t t t
  

 . 

t = Time interval, t T . 
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t  = Preceding interval to t, 0/t T t  . 

t  = Subsequent interval to t, // H lt T t
  

  . 

tR  = Set of feasible routes in t, t T  . 

'tR  = Subset of feasible routes in t, t T  . 

tL  = Set of vehicle locations in t, t T  . 

ijtc  = Cost of using arc (i, j) in t, t T  , where 
2 2

jtit
ijt ijtc c


    

itu  = Vehicle load after visiting pickup point i in t, 
t t

i N L   , t T  . 

As shown in Figure 3.4, at the beginning of interval t, all the evacuation data, 

including vehicle locations Lt, unfulfilled demands Nt, and arc travel times cijt, are 

updated. A CDVRPPD model is then formulated for generating transit vehicle routes 

applicable in t+. The CDVRPPD model is proactive that the evacuation data in t+ are 

estimated based on the evacuation data in t-.  

Link travel time is predicted by weighted moving average (Hunter, 1986). The 

weighted moving average method uses a weighting factor which gives more importance 

to recent observations while not discarding the older observations. The predicted travel 

time on arc (i, j) in t+, '
ijt

c  , is calculated using Equation (3.57) – (3.58). 

  ' 1ijtijt ijt
c c       (3.57) 

Where, ijtc  is the observed travel time on arc (i, j) in t. λ is the weighting factor 

that 0 1  . 
ijt
   is the average of observed travel times on arc (i, j) in t-, which is 

calculated using Equation (3.58). 
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 0

t

ijt
t t

ijt

c

h










 (3.58) 

Where, h is the number of observations recorded in the historical data set. 

The robustness and accuracy of the weighted moving average method depends on 

the value of the weighting factor, λ. λ determines how responsive a forecast is to travel 

time surge. For a real-time system with short-term travel time forecasting, a value of 

0.38   is suggested by Raiyn and Toledo (2014). The major advantage of the weighted 

moving average method is that minimizing data storage and computing requirements, 

which makes it suitable for real-time applications. 

The set of vehicle locations in t+, 
t

L  , is determined based on the vehicle 

locations in t, tL , and the arc travel time ijtc . 
t

L   is constantly updated over time. It is 

necessary to include 
t

L   when formulating the CDVRPPD model. Each vehicle k’s 

location is usually considered as a depot where the vehicle k departs in t+. Thus the 

problem turns to be a CDVRPPD with 1
t

L    depots, which consists of t
L   temporary 

depots at the vehicle locations and one real depot.  

For the vehicle routing problem with multiple depots, one of the most common 

methods is clustering which assigns pickup points to a depot. This procedure is deemed 

as a Generalized Assignment Problem (GAP). Once the GAP is solved, the problem is 

decomposed into multiple single-depot problems.  

For the CDVRPPD with multiple depots, vehicle k’s temporary location k
t

L   is 

counted as a depot, however, no vehicle other than vehicle k can start from k
tL . In this 
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particular case, the problem can be converted to a CDVRPPD with single depot by 

introducing dummy pickup points in the network. A dummy pickup point nk is added at 

vehicle k’s location. Demand of nk equals to vehicle k’s load. Service time at nk is 0. 

Travel time from nk to other nodes is calculated according to their distance. In particular, 

travel time from depot s0 to nk is set to 0 and travel times from pickup points and shelters 

to nk are set to infinite. After adding t
L   dummy pickup points, all the temporary depots 

are replaced by dummy pickup points. The problem is reduced to a CDVRPPD with 

single depot. The cost of adding t
L   dummy pickup points is that t

L   rows are added 

into the model. However, the complexity of the model is greatly reduced. 

The set of unfulfilled pickup points in t, tN , is formulated by Equation (3.59). 

 0,  when 
\ ,  otherwiset

t t t

N t t
N

N E F  


 


 (3.59) 

The set of unfulfilled pickup points in t+, 
t

N  , is predicted by Equation (3.60). 

When estimating 
t

N  , it does not take into account the pickup requests that arrive in t. 

The pickup requests that arrive in t will be considered in the next interval. The total 

pickup points set in t , including both the real pickup points and the dummy pickup 

points, is 
t t

N L  . 

 \ ,  ,t tt
N N F t t T

    (3.60) 

In order to explicitly describe the graph G in the dynamic environment, two sets 

of vertices are introduced when representing the network in t. Given a vertex i, 
it

V 

  is 
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defined as the set of vertices j such that arc (i, j) is not prohibited in t+, i.e., the vertices in 

the set of 
it

V 

  are directly reachable from i. Similarly, 
it

V 

  denotes the set of vertices j 

from which vertex i is directly reachable in t+. 

 

,  if 

\ ,  if 

,  if 

t t

tit t t

N L i S

V N M i i N L

S i M

 

  






 




 

 
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,  if 

t t
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t

t t

M i S
S N i i N

V
S i L

N L i M

 













 


 

 

Let 
irt
   be a variable indicating if route r visits pickup point i in t+. 

1,  if route  visits pickup point  in ,  ,  ',  

0,  otherwise
t t t

irt

r i t t T r R i N L


  



       
 


 

The CDVRPPD model has a binary variable 
rt

x   indicating whether route r is 

used in t+. 

1,  if route  is used in ,  ,  '

0,  otherwise
t

rt

r t t T r R
x 



     
 


 

For interval t+, the master problem model of CDVRPPD is formulated by (3.61) – 

(3.65). 

 
'

min
t

rt rt
r R

c x 



  (3.61) 

 
'

1,  
t

irt rt t t
r R

x i N L    



    (3.62) 
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  0,1 ,  ',  
rt t

x r R t T 

      (3.63) 

 '
t t

R R   (3.64) 

 t T   (3.65) 

The master problem model is to select transit vehicle routes over the planning 

horizon to fulfill pickup requests from registered evacuees and unregistered evacuees so 

as to minimize the total travel cost. Constraints (3.62) ensure that each pickup point i is 

covered by at least one route r in the routes set 
t

R  . It also requires a sub-problem model 

to generate routes with negative reduced cost. Let 1 2
, , ,

t t
t t t N L
     

 

 
  
 

 be the set 

of dual variables associated with (3.62) and 1 2
, , ,

t t
t t t N L
     

 

 
  
 

 be the dual 

optimal solution. The sub-problem model is formulated as follows. 

 min
t t

ijt ijt
i V j V

c z 

  

   (3.66) 

 1
ijt

i M j S
z 

 

  (3.67) 

 1
jt

ijt
j Mi V

z 






   (3.68) 

 1
it

ijt
i S j V

z 




 

   (3.69) 

 0,  ,  ,  
t t

iot ojt t
i V j V

z z o V o i o j  

  

        (3.70) 

 0,  ,  
ijt

z i S j M S       (3.71) 

 0,  ,  
ijt t t

z i N L j S        (3.72) 
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 0,  ,  
ijt t t

z i M j N L M        (3.73) 

 ,  , ,  ,    j i jit jt ijt t t
u u Qz Q d i j N L i j such that d d Q              (3.74) 

 ,  i it t t
d u Q i N L       (3.75) 

  0,1 ,  ,
ijt t

z i j V     (3.76) 

ijt
z   is decision variable. 

 1,  if arc ,  is used in the shortest path in ,  

,  ,  

0,  otherwi

 

se

,
ijt t t

i j t

t T i V j V i jz  








       




 

The CDVRPPD model is similar to the CVRPPD model. Both of them are 

formulated based on a master problem model and sub-problem model structure. 

Constraints (3.67) – (3.70) are flow conservation constraints. Constraints (3.71) – (3.73) 

are connectivity constraints. Constraints (3.74) – (3.75) are the sub-tour elimination 

constraint. Constraints (3.76) ensure the integrality. 

Model Variants 

Dynamic Interval; 

The interval length, l, in which the optimization process is performed, is directly 

related with the network size. It is an important parameter in the CDVRPPD model 

development. When a new pickup request is collected in t-, it will be processed in t and 

then an updated routing plan will be implemented in t+. Hence a new pickup request has 

to wait at least an interval until an updated routing plan is implemented. On one hand, a 

short interval is beneficial to decreasing the waiting time of the new pickup request; on 
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the other hand, a long interval is imperative at the initial stage of the planning horizon 

due to the computational burden. In some instances that new pickup requests from 

unregistered evacuees are infrequent, the network size will decrease after the first several 

intervals. As a result, the computational burden will be reduced. For the CDVRPPD, it is 

necessary to adjust the interval length dynamically in order to keep the model reacting to 

the evacuation data updates. 

In order to overcome the deficiency of fixed-length interval, dynamic interval is 

implemented. The length of interval t is calculated based on the computation time in t-. 

 ,  , ,  1t ct
l t t t T 

    (3.77) 

Where, lt is the length of interval t. 
ct

t   is the computation time in t-. β is the 

incremental factor which represents the percent of increase. At the initial stage of 

evacuation process, the network size increases with the new pickup request coming into 

the system. In response, the interval length will increase accordingly by multiplying the 

incremental factor β. It is expected that the computation time in t shows downtrend when 

the number of completed requests in t exceeds the number of new requests in t-. In this 

case, the incremental factor β makes the interval length falling lags behind the 

computation time. It ensures a surplus of time each interval which could be used to deal 

with uncertainties. 

Multiple Depots CDVRPPD; 

In some cases, the transit vehicles are not placed in a single depot. Instead, they 

are pre-allocated to multiple depots. An optimized allocation could make the emergency 

evacuation more efficient. This operation actually changes the CDVRPPD into a multi-
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depot CDVRPPD (MCDVRPPD), which obviously increases difficulty. In this section, a 

generic MCDVRPPD model is proposed in the context of emergency evacuation. 

A dummy base depot s0 where all routes start and end is introduced. The 

introduction of the base depot could effectively convert the MCDVRPPD into the 

CDVRPPD. The travel costs between the base depot and the other nodes in the network 

are described as follows. All other travel costs are set as defined by the original 

CDVRPPD.  

1. Travel costs from the base depot to the other depots are set to 0.  

2. Travel costs from the base depot to the pickup points are set to infinite. 

3. Travel costs from the base depot to the dummy pickup points are set to 

infinite. 

4. Travel costs from the base depot to the shelters are set to infinite. 

5. Travel costs from the pickup points to the base depot are set to infinite. 

6. Travel costs from the dummy pickup points to the base depot are set to 

infinite. 

7. Travel costs from the other depots to the base depot are set to infinite. 

8. Travel costs from the shelters to the base depot are set to 0. 

A solution to the MCDVRPPD includes a set of routes that originate from the 

base depot, then perform a number of pickups, and finally end at a shelter. Each route 

that starts from the base depot must pass a real depot before pickup. The two vertices set, 

it
V 

  and 
it

V 

 , are also updated as follows after the introduction of the base depot. 
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The MCDVRPPD model is developed based on a set-covering formulation. The 

master problem model is same as (3.61) – (3.65). The sub-problem model is presented by 

(3.78) – (3.91). 
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z i s j N L M       (3.85) 

 00,  \ ,  
ijt

z i S s j M S       (3.86) 
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ijt t
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 0 00,  \ ,  \
ijt t

z j S s i V s      (3.88) 

 ,  , ,  ,    j i jit jt ijt t t
u u Qz Q d i j N L i j such that d d Q              (3.89) 

 ,  i it t t
d u Q i N L       (3.90) 

  0,1 ,  ,
ijt t

z i j V     (3.91) 

(3.78) is the objective function. Constraints (3.79) – (3.83) are flow conservation 

constraints. Constraints (3.85) – (3.88) are connectivity constraints. Constraints (3.89) – 

(3.90) are the sub-tour elimination constraint. Constraints (3.91) ensure the integrality.  
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CHAPTER IV 

SOLUTION ALGORITHMS AND SYSTEM DESIGN 

In this chapter, solution algorithms to the CDVRPPD model are presented. The 

computational results on benchmark problems are compared to other studies in the 

literature. A SmartEvac system is developed to manage the transit vehicle routing in 

emergency evacuation. Models and algorithms discussed in Chapter III and Chapter IV 

are implemented in the SmartEvac system. 

Solution Algorithms 

In order to solve the CDVRPPD without enumerating all the routes, a column 

generation approach is applied to the problem. The general process of the column 

generation approach is presented as follows. First, an initial subset '
t

R   of all feasible 

routes 
t

R   is enumerated. The LRMP, whose routes set is restricted to '
t

R  , is then 

solved and the dual solution is obtained. The dual solution is utilized in a sub-problem to 

determine if there are any routes that should be added to '
t

R   towards an optimum. If 

new routes are found and added to '
t

R  , the LRMP is then resolved with respect to the 

expanded '
t

R  . This process repeats until no additional routes can be found that further 

optimize the objective. At this point, the optimum solution to the LMP with 
t

R   is found 

by solving the LRMP with '
t

R  .  The optimum solution to the LMP is not necessarily 
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integer. Actually, most of time it is fractional. If it is fractional, the final step is to solve 

the RMP as an integer problem in order to get an integer solution. A flow chart of the 

column generation method is shown in Figure 4.1. 

 

Figure 4.1 Column Generation Approach Flow Chart 

 

The specific procedures of the column generation method are presented by the 

following steps. 

Step 1. Create an initial subset of columns, ',  '
t t t

R R R   . 

Step 2. Solve the LRMP and get the optimal solution ,  '
rt t

y r R   and the 

corresponding dual solution 
t

  . 
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Step 3. Solve the ESPPCC sub-problem with 
t

  . Identify routes ,  
t

r r R 

satisfying 0
rt

c   . 

Step 4. If r  , add r into '
t

R   and go to step 2. 

Step 5. If r  , check if 
rt

y   is an integer solution. 

Step 6. If 
rt

y   is integer, go to step 8. 

Step 7. If 
rt

y   is fractional, solve the integer RMP. 

Step 8. End. 

Initializing Set of Columns 

Firstly, a set of columns is initialized for the LRMP. The initial set of columns 

needs to include at least a feasible solution to the LRMP. A common initial set is made of 

routes visiting a single pickup point, i.e. routes of type C – N – M – C. Since a good set of 

initial routes helps to generate routes with low reduced cost (Toth et al., 2001), quick 

heuristics are implemented to generate the initial routes set with high quality. 

In t0, the first interval of the planning horizon, the Clarke and Wright Savings 

Algorithm (Clarke and Wright, 1964) is applied to create initial routes. The Clarke and 

Wright Savings Algorithm is based on notion of savings. The basic idea is that a cost 

saving 0 0ij i j ijs c c c    is generated when two routes  0, , ,0i  and  0, , ,0j  can be 

feasibly merged in to a single route  0, , , , ,0i j . The flow chart of the Clarke and 

Wright Savings Algorithm is shown in Figure 4.2. 
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Figure 4.2 Clarke-Wright Savings Algorithm Flow Chart 

 

The specific procedures of the algorithm are implemented as follows. 

Step 1. Create an initial routes set R’ including |N| vehicle routes. Each route has 

the following route structure,  0, , ,0 ,  ii m i N , where mi is the nearest 

shelter to pickup point i. 

Step 2. Calculate the cost savings 0 0 ,  , ,  
i iij im m j ijs c c c c i j N i j       , where 

0 0,  
imc i N   . Rank the savings sij and list them in descending order. 

This creates the savings list. 
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Step 3. Process the savings list beginning with the topmost entry. For sij, find 

route 1 1,  'r r R  that starts with (0, j) and route 2 2,  'r r R  that ends with (i, 

mi, 0). Combine r1 and r2 into a new route r3 by deleting (0, j) and (i, mi, 0) 

and introducing (i, j). If r3 is feasible to the model, add r3 into R’ and 

remove r1 and r2 from R’.  

Step 4. Iterate to the next entry in the savings list until the end. 

The advantage of the Clarke and Wright Savings Algorithm lies in its simplicity 

and speed, which makes it suitable to generate a good set of initial routes. It typically 

runs within 0.5 seconds on Christofides, Mingozzi and Toth’s (1979) benchmark 

instances with 100 nodes. 

The initialization step is handled differently for interval  0\t T t  . The initial 

routes set '
t

R   in t+ is created based on the routes set Rt in t. First, the Clarke and Wright 

Savings Algorithm is used to generate an initial routes set Rini that serves the new pickup 

points in Et-. Second, the routes set Rt is updated. The vehicle routes that have been 

completed in t are removed from Rt. The pickup points that have been visited in t are 

removed from the routes as well. Third, an insertion algorithm is applied to Rt. For a new 

pickup point n in Et and a route r in Rt, the algorithm inserts the new pickup point n to an 

arc (i, j) in r such that the incremental cost of inserting n between i and j is minimal. The 

flow chart of the insertion algorithm is shown in Figure 4.3. 
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Figure 4.3 Insertion Algorithm Flow Chart 

 

The specific procedures are described as follows.  

For every pickup point n in Et 

 For every route r in Rt 
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Find an arc (i, j) in r such that 
int njt ijt

c c c     is minimal.  

 
 

,
argmin

int njt ijti j
c c c     

Construct a new route r’ by replacing (i, j) with (i, n, j). 

If r’ is feasible to the model, add r’ into Rt. 

Update Rt 

End 

Cycle Elimination Algorithm for the ESPPCC 

The objective of the pricing sub-problem is to identify the routes with negative 

reduced cost. The first step is to find the shortest path to each pickup point. This step is 

considered to be |N| ESPPCCs, each of which is NP-hard (Dror, 1994). For each 

ESPPCC, the task is to find the shortest partial path r from Node 0 to Node ,  i i N . 

Since shelters are not involved in finding the shortest partial paths, the network can be 

simplified by removing the shelters. Solving the ESPPCC is the most time consuming 

procedure in the column generation and thus significantly affects the performance of the 

optimization. Algorithms solving the ESPPCC in the literature include dynamic 

programming, branch-cut, and classic heuristics.  

In this section, a cycle elimination algorithm is proposed based on standard 

labeling techniques presented by Desrochers (1988), Beasley and Christofides (1989), 

and Feillet et al. (2004). The CE algorithm first turns the ESPPCC to 2-cycle SPPCC by 

allowing cycles with length ≤ 2. Then a resource constraint is iteratively imposed upon 

the model to eliminate cycles with length > 2. Resource in the ESPPCC is related to 

capacity, time, and node availability etc., whose consumption is always nonnegative. The 



www.manaraa.com

 

65 

fundamental of the CE algorithm is based on Desrochers’ (1988) labeling algorithm 

which associates each potential partial path with a label indicating the consumption of 

resources.  

The CE algorithm creates labels for each node ,  i i N . Each label li represents a 

partial path Xi from node 0 to node i. li includes a pointer Pre(li) which links to li’s parent 

label. li’s parent label is defined as the label from which li is generated. Let q(li) denote 

the capacity consumed on path Xi and c(li) denote the travel cost associated with the path 

Xi. Thus a label li is represented as li(Pre, q, c). The algorithm repeatedly extends each 

label to its successors until all labels have been extended in all feasible ways. The 

extension is operated by appending an arc (i, j) to path Xi to generate a new path Xj. When 

a label li is extended to a label lj, the capacity consumption and the path cost are updated 

as follows, 

    j i jq l q l d   (4.1) 

    j i ijc l c l c   (4.2) 

A new label lj(pre, q, c) is generated only if, 

  jq l Q  (4.3) 

It is noted that (4.1) is strictly non-decreasing since dj > 0 for all j N . The 

extension of a label li is denoted by Ext(li). 

Dominance Rule 

The efficiency of the CE algorithm highly depends on the number of labels 

generated. Since the extension operation creates exponential number of labels, it is 
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necessary to discard the labels which will not lead to an optimal solution. To this purpose 

a dominance rule is applied in the label extension so that the algorithm records only non-

dominated labels.  

If there are two labels li(1) and li(2) associated with node i satisfying q(li(1)) ≤ 

q(li(2)), c(li(1)) ≤ c(li(2)), and li(1) ≠ li(2), then any feasible extension from label li(2) will be 

also feasible from label li(1). In addition, new labels created based on label li(1) will always 

be better than the labels created based on label li(2), in terms of travel cost (if the objective 

is to minimize travel cost). Hence the label li(2) can be discarded. The dominance rule is 

defined that li(1) dominates li(2), denoted by (1) (2)i dom il l , if and only if the following 

conditions are met. 

    (1) (2)i iq l q l  (4.4) 

    (1) (2)i ic l c l  (4.5) 

 (1) (2)i il l  (4.6) 

Figure 4.4 illustrates the dominance rule that any label in the shaded area will 

dominate label li(2). 
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Figure 4.4 Illustration of Dominance Rule 

 

After a new label li is generated, it is necessary to check whether the new label is 

dominated by other labels associated with the same node, and whether the new label 

dominates other labels. The procedure of dominance check to li is denoted by Dom(li). 

Any label which has been identified as being dominated by other labels will be discarded 

because any extension from the dominated label will be worse than the extension from 

the dominant label. 

Enhanced Dominance Rules for 2-Cycle Elimination 

The above dominance rule is applicable in the context of finding a non-

elementary shortest path. Because of the existence of negative cost arcs, the relaxation of 

elementary constraint results in a lot of paths with cycles. This typically weakens the 

lower bound which leads to a bigger branch-and-bound tree. To improve the lower 

bound, Houck et al. (1980) proposed an algorithm for solving the SPPRC with 2-cycle 
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elimination. Larsen (1999) extended Houck’s algorithm with new definition of labels. In 

this section, Larsen’s method is enhanced by improving the dominance rules. 

Let (i, q) denote a state of node i, which indicates the capacity consumption. For 

each state, the algorithm generates two types of labels as follows. A new parameter Typ is 

appended to li. Typ(lj) denotes the type of li. 

1. Strong-dominant label that Typ(lj) = Strong. A strong-dominant label is the 

prevailing label which dominates the extension. However, a strong-dominant 

label li cannot be extended to its predecessor node. Let v(li) denote the 

associated node of li. li ‘s predecessor node is the node which li’s parent label 

is associated with, denoted by v(Pre(li)). 

2. Weak-dominant label that Typ(lj) = Weak. A weak-dominant label is 

dominated by the strong-dominant label. A weak-dominant label has the 

potential of being extended to the strong-dominant label’s predecessor node. 

It actually provides an alternative path when the extension of the strong-

dominant label forms a 2-cycle. 

The algorithm can effectively eliminate 2-cycle by introducing a weak-dominant 

label for each state. As a result, the total number of labels is doubled. Therefore the 

computational complexity remains the same.  

Strong-dominant label and weak-dominant label have different extension rules. 

When a label li is extended to generate a label lj, the following extension rules are 

applied.  
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1. If Typ(li) = Strong, (4.1) – (4.3) are applied. li is not permitted to extend to 

v(lj) if v(pre(li)) = v(lj). When v(pre(li)) = v(lj), the weak-dominant label is 

extended to v(lj) instead of il  and (4.1) – (4.3) are applied. 

2. If Typ(li) = Weak, li is extendable on the condition that v(lj) is the predecessor 

node of the strong-dominant label which dominates li, otherwise, il  is not 

extendable. When v(lj) is the predecessor node of the strong-dominant label, li 

is extended instead of the strong-dominant label and (4.1) – (4.3) are applied. 

In summary, a strong-dominant label is extendable to any node except its 

predecessor node. A weak-dominant label is not extendable to any nodes other than the 

predecessor node of the strong-dominant label. In addition, any extension has to satisfy 

(4.1) – (4.3). 

New dominance rules are added in addition to (4.4) – (4.6), which are described 

as follows. Assume that li(1) is an old label at node i and li(2) is a new generated label at 

node i. If (1) (2)i dom il l  according to (4.4) – (4.6), li(2) can be discarded only if one of the 

following conditions are satisfied.  

1. Typ(li(1)) = Strong and v(Pre(li(1))) = v(Pre(li(2))). 

2. Typ(li(1)) = Weak. 

When Typ(li(1)) = Strong and v(Pre(li(1))) ≠ v(Pre(li(2))), the new generated label 

li(2) will proceed to compare with the weak-dominant label dominated by li(1), to 

determine whether it can replace the weak-dominant label. 

If 
   2 1i dom il l , then li(1) can be discarded only if one of the following conditions 

are satisfied. 



www.manaraa.com

 

70 

3. Typ(li(1)) = Strong and v(Pre(li(1))) = v(Pre(li(2))). 

4. Typ(li(1)) = Weak. 

Similarly, when Typ(li(1)) = Strong and v(Pre(li(1))) ≠ v(Pre(li(2))), the old label li(1) 

will become the weak-dominant label which is dominated by li(2). 

Pseudo Code for 2-Cycle Elimination 

The pseudo code of the algorithm is presented is this section. The following 

symbols are used in the code. Г represents the set of labels which have not been 

extended. Only strong-dominant labels are placed in Г. Labels in Г are placed in 

lexicographical order. Given two labels li(Pre, q, c, Typ) and lj(Pre, q, c, Typ), li is 

lexicographically smaller than lj if q(li) < q(lj). Ext(li) is the extension procedure which 

extends label li to its successors. The capacity constraint is checked and only feasible 

labels are produced. Dom(li) is the procedure which applies the dominance rule to the 

new generated label. When a new label li(Pre, q, c, Typ) is generated at node i, the 

dominance rule is applied to check whether the new label is dominated by the old label 

associated with state (i, q(li)). Then the strong-dominant label and the weak-dominant 

label associated with state (i, q(li)) are updated according to the results of the dominance 

check. A flow chart of the 2-cycle elimination algorithm is shown in Figure 4.5. 
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Figure 4.5 2-Cycle Elimination Flow Chart 

 

The specific procedures of the 2-cycle elimination algorithm are presented as 

follows. 

Step 1. Initialization 
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Initialize the label l0 = (Null, 0, 0, Strong) for node 0. Initialize li = (Null, q, +∞, 

Strong) and li’ = (Null, q, +∞, Weak) for all other node i, i N  and q, 0 < q ≤ Q. Then, 

let Г = {l0}. 

Step 2. Label Selection 

If Г = Ø, go to Step 4. 

Else, select the first label li in Г. Then Remove li from Г. 

Step 3. Label Extension 

For all  ,i j A , j ≠ 0 

Create a new label lj ← Ext(li). 

Apply the dominance rule to lj, Dom(lj). 

Step 4. Insert all new generated strong-dominant labels into Г in lexicographical 

order. If Г ≠ ∅, go to Step 2. 

Step 5. Stop. All labels are extended in all feasible ways. 

The algorithm generates a set of strong-dominant labels at each node i, i N . 

Then the best label at node i, which indicates a shortest path from node 0 to node i, is 

found.  

A sample network is presented in Figure 4.6. The network consists of seven nodes 

(0, 1, 2, 3, 4, 5, 6) where node 0 is depot and node 1 to node 6 are customers. The 

demand of each customer is set to one. The vehicle’s capacity is five. The travel cost is 

marked on the arc. Assume that the travel cost on arc (i, j) equals to the travel cost on arc 

(j, i), which essentially makes it an undirected graph. It is obvious that there exist three 

negative cost cycles in the graph, which are 2-3-5, 3-4-6, and 2-3-4-6-5. 
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Figure 4.6 An Example of 2-Cycle Elimination 

 

Let q
il  denote a label associated with node i’s state (i, q). Initialize q

il  and 'q
il  for 

i = 0, 1, 2, 3, 4, 5, 6 and q = 0, 1, 2, 3, 4, 5 according to the step 1 of 2-cycle elimination. 

Table 4.1 shows the results from the above example.  

Table 4.1 Calculations of 2-Cycle Elimination Algorithm  

Iteration Г Selected Label New Generated Labels 

1  0
0 ,0,0,l Null Strong  0

0l   1 0
1 0 ,1,3,l l Strong  

 1 0
2 0 ,1,3,l l Strong  

 1 0
3 0 ,1,6,l l Strong  

2  1 0
1 0 ,1,3,l l Strong  

 1 0
2 0 ,1,3,l l Strong  

 1 0
3 0 ,1,6,l l Strong  

 1 0
1 0 ,1,3,l l Strong   2 1

3 1 ,2,4,l l Strong  

 2 1
4 1 ,2,5,l l Strong  

 1 0
2 0 ,1,3,l l Strong   2 1

3 2 ,2,7,'l l Weak  

 2 1
5 2 ,2, 5,l l Strong  
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Table 4.1 (continued) 

   1 0
3 0 ,1,6,l l Strong   2 1

1 3 ,2,7,l l Strong  

 2 1
2 3 ,2,10,l l Strong  

 2 1
4 3 ,2,7,'l l Weak  

 2 1
5 3 ,2,7,'l l Weak  

 2 1
6 3 ,2,7,l l Strong  

3  2 1
3 1 ,2,4,l l Strong  

 2 1
4 1 ,2,5,l l Strong  

 2 1
5 2 ,2, 5,l l Strong  

 2 1
1 3 ,2,7,l l Strong  

 2 1
2 3 ,2,10,l l Strong  

 2 1
6 3 ,2,7,l l Strong  

 2 1
3 1 ,2,4,l l Strong   3 2

1 3 ,3,8,'l l Strong  

 3 2
2 3 ,3,8,'l l Weak  

 3 2
4 3 ,3,5,'l l Weak  

 3 2
5 3 ,3,5,'l l Weak  

 2
3

3
6 ,3,5,l Dominatedl  

 2 1
4 1 ,2,5,l l Strong   3 2

1 4 ,3,9,' 'l l Weak  

 3 2
3 4 ,3,6,'l l Weak  

 3 2
6 4 ,3,2,'l l Weak  

 2 1
5 2 ,2, 5,l l Strong   3 2

2 5 ,3, 1,'l l Strong  

 3 2
3 5 ,3, 4,l l Strong  

 3 2
6 5 ,3, 2,l l Strong  

 2 1
1 3 ,2,7,l l Strong   3 2

3 1 ,3, ,'l l Dominated  

 3 2
4 1 ,3,9,l l Dominated  

 2 1
2 3 ,2,10,l l Strong   3 2

3 2 ,3, ,'l l Dominated  

 3 2
5 2 ,3,2,l l Strong  

 2 1
6 3 ,2,7,l l Strong   3 2

3 6 ,3, ,'l l Dominated  

 3 2
4 6 ,3,4,l l Strong  

 3 2
5 6 ,3,10,l l Dominated  
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Table 4.1 (continued) 

4  3 2
1 3 ,3,8,'l l Strong  

 3 2
2 5 ,3, 1,'l l Strong  

 3 2
3 5 ,3, 4,l l Strong  

 3 2
6 5 ,3, 2,l l Strong  

 3 2
5 2 ,3,2,l l Strong  

 3 2
4 6 ,3,4,l l Strong  

 3 2
1 3 ,3,8,'l l Strong   4 3

3 1 ,4,10,'l l Dominated  

 4 3
4 1 ,4,10,l l Dominated  

 3 2
2 5 ,3, 1,'l l Strong   4 3

3 2 ,4,3,'l l Weak  

 4 3
5 2 ,4,0,'l l Strong  

 3 2
3 5 ,3, 4,l l Strong   4 3

1 3 ,4, 3,l l Strong * 

 4 3
2 3 ,4,0,' l Weakl  

 4 3
4 3 ,4, 3,'l l Weak  

 4 3
5 3 ,4,7,'l l Dominated  

 4 3
6 3 ,4, 3,l l Strong  

 3 2
6 5 ,3, 2,l l Strong   4 3

3 6 ,4, 1,l l Strong  

 4 3
4 6 ,4, 5,l l Strong  

 4 3
5 6 ,4,5,' 'l l Weak  

 3 2
5 2 ,3,2,l l Strong   4 3

2 5 ,4, 3,'l l Strong * 

 4 3
3 5 ,4,3,l l Dominated  

 4 3
6 5 ,4,5,l l Dominated  

 3 2
4 6 ,3,4,l l Strong   4 3

1 4 ,4,6,'l l Weak  

 4 3
3 4 ,4,5,l l Dominated  

 4 3
6 4 ,4,2,' 'l l Weak  
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Table 4.1 (continued) 

5  4 3
5 2 ,4,0,'l l Strong  

 4 3
1 3 ,4, 3,l l Strong  

 4 3
6 3 ,4, 3,l l Strong  

 4 3
3 6 ,4, 1,l l Strong  

 4 3
4 6 ,4, 5,l l Strong  

 4 3
2 5 ,4, 3,'l l Strong  

 4 3
5 2 ,4,0,'l l Strong   5 4

2 5 ,5, 3,'l l Strong  

 5 4
3 5 ,5,1,'l l Weak  

 5 4
6 5 ,5,3,'l l Weak  

 4 3
1 3 ,4, 3,l l Strong   5 4

3 1 ,5,7,'l l Dominated  

 5 4
4 1 ,5, 1,'l l Weak  

 4 3
6 3 ,4, 3,l l Strong   5 4

3 6 ,5,3,'l l Dominated  

 5 4
4 6 ,5, 6,l l Strong * 

 5 4
5 6 ,5,0,'l l Weak  

 4 3
3 6 ,4, 1,l l Strong   5 4

1 3 ,5,0,'l l Weak  

 5 4
2 3 ,5,3,'l l Weak  

 5 4
4 3 ,5,0,l l Dominated  

 5 4
5 3 ,5,0,l l Dominated  

 5 4
6 3 ,5,4,'l l Dominated  

 4 3
4 6 ,4, 5,l l Strong   5 4

1 4 ,5, 3,l l Strong  

 5 4
3 4 ,5, 4,l l Strong * 

 5 4
6 4 ,5, 6,'l l Strong * 

 4 3
2 5 ,4, 3,'l l Strong

 
 5 4

3 2 ,5,1,l l Dominated  

 5 4
5 2 ,5, 8,'l l Strong * 

Note: * represents the best label for the current state. 

In Table 4.1, Typ = Dominated means that the new generated label is dominated 

by other labels so that the new generated label will be discarded. The algorithm returns 

the best label at each node, which represents the shortest path to the associated node. The 

best labels are marked with an asterisk in Table 4.1. It is clear that 2-cycles are 

effectively eliminated in the calculation. However, the algorithm cannot eliminate cycles 
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of length > 2. For example,  5 4
5 2 ,5, 8,'l l Strong  which is the best label at node 5 contains 

a 3-cycle (5, 3, 2, 5). In order to remove cycles of length > 2, a new resource which 

indicates the availability of a node is added. 

Dummy Resources 

Beasley and Christofides (1989) proposed a dummy resource for each node i. The 

dummy resource is binary: each node has one unit of dummy resource and the dummy 

resource is consumed when the corresponding node is visited. The consumption of the 

dummy resource effectively prohibits the corresponding node from being visited more 

than once. In general, n dummy resources are required for n nodes. The complexity of 

Beasley and Christofides’ approach is  22nO Qn . The running time will be exponential 

in the number of dummy resources, n. As a result, this approach was not implemented 

and no computational experiments were conducted.  

In this section, Beasley and Christofides’ idea is borrowed by introducing dummy 

resources for the nodes. However, dummy resources are only implemented to a subset of 

pickup points. The number of required dummy resources decreased, thus reducing the 

complexity. This approach combined with 2-cycle elimination algorithm will provide 

significant bound improvement to the LRMP. 

The dummy resource is defined as the availability of a node to a path. It is 

consumed when the corresponding node is visited. Therefore the corresponding node is 

not available to the extension of a path that consumes the dummy resource. The dummy 

resource is defined as follows. 
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0,  if the corresponding node  is visited by path , where  
£

1,  otherwise
r
i

i r i U
 


 

£ = (i, r) is dummy resource vector and U is a subset of pickup points. Obviously 

the complexity depends on |U|. The subset should include the pickup points that are most 

possible to form cycles in the path extension procedure. By imposing dummy resources 

only on those vulnerable pickup points, the algorithm could eliminate cycles as well as 

reducing computation burden. 

In order to determine a proper subset U, solution from previously discussed 2-

Cycle elimination algorithm is used. For the routes set R’ generated by 2-Cycle 

elimination, first of all, routes with cycles are identified. Pickup points which constitute 

cycles in these routes are considered as the most vulnerable nodes that need to be put in 

U. Then, dummy resources £ are imposed to the pickup points in U. Finally, the labels 

which contain cycles are removed from the solution set. 

After modification, the 2-Cycle elimination algorithm will run and solve the 

problem again. The solution, which may contain cycles, is then examined again and 

based on the examination, new pickup points that are forming cycles in the solution are 

added to U. This procedure is repeated until the solution from the 2-Cycle elimination 

algorithm is elementary. The pseudo code for this combined algorithm is shown as 

follows. 

Step 1. Perform 2-Cycle elimination to ESPPCC. Get routes set R’. 

Step 2. If R’ is not elementary, go to step 3. Else, stop. 

Step 3. Identify nodes forming cycles in R’. Add them to U. 

Step 4. Impose dummy resources to nodes in U. Update R’. Go to step 2. 
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Take the network presented in Figure 4.6 as an example.  5 4
5 2 ,5, 8,'l l Strong

contains a 3-cycle (0, 2, 5, 3, 2, 5). Node 2 and node 5 are identified as vulnerable nodes 

that are forming cycles. Therefore, dummy resources are added to node 2 and node 5 and 

 5 4
5 2 ,5, 8,'l l Strong  is removed from the solution. After re-run the 2-Cycle algorithm, 

 5 4
5 2 ,5, 8,'l l Strong  which corresponds to route (0, 2, 5) is selected as the best label at 

node 5. 

Summary 

This section described a column generation based algorithm to solve the 

CDVRPPD. A labeling algorithm combined with cycle elimination procedure is used to 

solve the pricing sub-problem. Figure 4.7 shows the overall structure of the algorithm.  
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Figure 4.7 Overall Structure of Column Generation Algorithm 

 

In Figure 4.7, one of the key steps is to generate initial routes set for the current 

interval. This procedure is completed by inserting and deleting evacuee requests from the 

last interval. Generally, the routes set is expanded constantly along with the increase of 

customer requests. For example, for a problem with 100 customers, the initial routes set 

could include more than 20000 routes in the 7th interval. In order to keep the routes set to 

a manageable size for the following integer problem, the algorithm will limit the size of 

initial routes set to 10000, which means the initialization process will be stopped as soon 
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as it reaches the limit. The procedure will not affect the performance of the algorithm but 

save computation time for solving the integer problem. 

Computational Results 

Benchmark instances available at http://goo.gl/9tclrK were used to evaluate the 

proposed algorithms. The name of an instance indicates the type of the problem (A, E and 

S represents Asymmetric, Euclidean and Symmetric problems, respectively) and the 

number of nodes and available vehicles. The last character denotes the source of the 

instance. For example, the instance E051-05E is a Euclidean problem proposed by 

Christofides and Eilon (1969) which consists of 51 nodes and 5 vehicles. In the instances, 

nodes are distributed in a Euclidean plane. The travel times among nodes are calculated 

according to the corresponding Euclidean distances. 

The instances were performed on an Intel P8200 Duo 2.2 GHz PC with 4G 

memory. CPLEX was used as the LP and MIP solver. For each instance, the lower 

bound, the number of columns in Rt, and the total computational time taken in CPU 

seconds were reported. The results from Agarwal, Mathur, and Salkin (1989), Bixby 

(1998), and Hadjiconstantinou, Christofides, and Mingozzi (1995) were also presented in 

Table 4.3 – Table 4.5 in comparison. 

  



www.manaraa.com

 

82 

Table 4.2 Computational Results 

No. Instance Nodes Z* ZLB Effectiveness 
of ZLB Cols Time for Generating 

Columns (s) 
Total CPU Time 
(s) 

1 E016-03m 15 273 270 98.9% 264 1.4 3.9 

2 E021-04m 20 353 353 100.0% 492 1.1 3.5 

3 E026-08m 25 607 606 99.8% 642 1.0 2.4 

4 E031-09h 30 610 605 99.2% 1137 7.5 19.1 

5 E036-11h 35 698 698 100.0% 1644 6.5 13.7 

6 E041-14H 40 859 859 100.0% 1829 21.0 59.5 

7 E051-05e 50 521 518 99.4% 4904 53.1 138.8 

8 E076-10e 75 830 815 98.2% 8919 126.5 335.1 

9 E101-08e 100 815 804 98.6% 10248 744.8 2381.2 

10 E101-10c 100 820 803 97.9% 14346 801.2 2503.2 

 

Table 4.3  Results Comparison of Agarwal, Mathur, and Salkin (AMS) and CE  

Problem n Z* 
AMS CE Algorithm 

ZLB Effectiveness 
of ZLB ZLB Effectiveness 

of ZLB Total CPU Sec 

E016-03M 16 273 268 98.2% 270 98.9% 3.9 

E021-04M 21 353 351 99.4% 353 100.0% 3.5 

E022-04G 22 375 374 99.7% 369 98.4% 1.1 

E026-08M 26 607 606 99.8% 606 99.8% 2.4 

 

Table 4.4 Results Comparison of Bixby and CE  

Problem n Z* 
Bixby CE Algorithm 

ZLB Effectiveness 
of ZLB ZLB Effectiveness 

of ZLB Total CPU Sec 

E023-03G 23 568 566 99.6% 567 99.8% 23.5 
E030-04S 30 503 503 100.0% 503 100.0% 9.5 
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Table 4.5 Results Comparison of Hadjiconstantinou, Christofides, and Mingozzi 
(HCM) and CE  

Problem n Z* 
HCM CE Algorithm 

ZLB Effectiveness 
of ZLB ZLB Effectiveness 

of ZLB Total CPU Sec 

E036-llH 36 698 694 99.4% 698 100.0% 13.7 
E041-14H 41 859 852 99.2% 859 100.0% 59.5 
E051-05E 51 521 516 99.0% 518 99.4% 138.8 
E076-10E 76 830 815 98.2% 815 98.2% 335.1 
E101-08E 101 815 792 97.2% 804 98.7% 2381.2 

 

In Table 4.3 – Table 4.5, the name of the instance and the number of nodes 

involved are listed. The value of the optimal integer solution Z*, lower bound ZLB, and 

the effectiveness of ZLB, which is the difference between the optimum and lower bound, 

are provided for the AMS, Bixby, HCM methods, and CE algorithm, respectively. In 

addition, the computational time of the CE algorithm is provided in the table, however, 

no data is found regarding the computational time of the AMS, Bixby, HCM methods. 

Among 9 of the 11 instances, the lower bound ZLB provided by the CE algorithm is 

tighter than the other three methods.  

SmartEvac System 

To implement the proposed models and algorithms, a SmartEvac system is 

designed for emergency evacuation. The framework of the SmartEvac system is shown in 

Figure 4.8. The center part of Figure 4.8 is the optimization module where the models 

and algorithms are implemented. The CORSIM simulation module on the right hand side 

provides simulation data to the optimization module. The real world application module 

shows the perspective of implementation of the proposed models and algorithms in the 

real world. 
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Figure 4.8 SmartEvac System Framework 

 

CORSIM RTE is developed to establish communications between the CORSIM 

simulation module and the optimization module. At each interval, the CORSIM RTE 

collects data from the CORSIM simulation, and exports the simulation data to the 

evacuation database in the optimization module. Furthermore, the CORSIM RTE is 

programmed to monitor network interruptions that may have significant impacts on travel 

time, and capture the drastic travel time change. In addition to the simulation data, the 

evacuation database is capable of receiving real-time pickup requests from external data 

sources. The optimization module utilizes the simulation data, including link travel times 

and vehicle positions, and the evacuation data, including registered and unregistered 

evacuee’s requests, shelters information, and transit vehicles information, to update the 

transit vehicle routing plan, and then feeds the updated transit vehicle routing plan back 

to the simulation module through CORSIM RTE. This process repeats until the 

emergency evacuation (simulation) is finished. At the end of the evacuation, the 
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SmartEvac system will create a performance evaluation report in terms of the quality and 

efficiency of the transit vehicle routing plan. 

The SmartEvac system is programmed using Microsoft Visual Studio C++. 

Microsoft SQL server 2005 is used to accommodate the evacuation database. The class 

view and functions of the optimization module are shown in Figure 4.9. There are five 

major classes developed in the system. The CPLEX class is the master class which the 

optimization models and algorithms are implemented. The CEvacuation class controls the 

communication between the system and simulation. CORSIM RTE is used as the 

interface between the system and simulation. CNode, CRoute, and CVehicle classes 

contain the information of nodes, routes, and vehicles, respectively.  

 

Figure 4.9 Class View and Functions of the Optimization Module 
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The data dictionary of the evacuation database is shown in Figure 4.10. The 

evacuation database is updated in real time through CORSIM RTE. There are six tables 

which constitute the database. All the evacuation data regarding the vehicles, shelters, 

pickup points, evacuees, routes, and travel times are included in the database.  

 

Figure 4.10 Database Table Structure 
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CHAPTER V 

CASE STUDY 

In this chapter, a case study of Hurricane Gustavo evacuation in Gulfport is 

proposed to evaluate the SmartEvac system. The case study is based on CORSIM 

simulation, which provides dynamic travel time for the system. Scenarios corresponding 

to different evacuation situations are built in the simulation. The capability of the 

SmartEvac system working in a dynamic environment is validated by the case study. 

Problem Statement 

In this case study, emergency evacuation scenarios are replicated based on the 

data from the Hurricane Gustavo emergency evacuation in 2008. There are 182 registered 

evacuees across 66 pickup points in the Mississippi Gulf Coast region. In addition, based 

on CTA’s experience, 46 unregistered evacuees across 30 pickup points are considered in 

this case study. The unregistered evacuees are expected to call for help at any time during 

the emergency evacuation. Three shelters in the region provide temporary housing for the 

evacuees. The distribution of shelters and pickup points with registered evacuees is 

shown in Figure 5.1. 
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Figure 5.1 Distribution of Shelters and Pickup Points with Registered Evacuees 

 

Detail information about shelters and pickup points with registered evacuees is 

listed in Table 5.1. Node 0 is the depot where all the transit vehicles depart. Node 1 to 

Node 3 are the shelters to accommodate the evacuees. Each shelter has a capacity of 350. 

Node 4 to Node 69 are the pickup points with registered evacuees. 
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Table 5.1 Shelters and Pickup Points’ Information  

No. Address 
Demand / 

Capacity 
No. Address 

Demand / 

Capacity 

0 DeBuys Road, Gulfport NA 35 Hewes Ave., Gulfport 1 

1 Auto Mall Pkwy, D'Iberville 350 36 28th St., Gulfport 5 

2 Espy Ave., Pass Christian 350 37 Pass Rd., Gulfport 1 

3 Eisenhower Dr, Biloxi 350 38 61st Ave., Gulfport 1 

4 Bradford St., Biloxi 1 39 Mill Rd., Gulfport 2 

5 McDonnell Ave., Biloxi 4 40 Railroad St., Gulfport 2 

6 Auburn Dr., Biloxi 1 41 Taylor Blvd., Gulfport 3 

7 Maple St., Biloxi 5 42 28th St., Gulfport 4 

8 Claiborne St., Biloxi 1 43 32nd Ave., Gulfport 1 

9 Hope St., Biloxi 3 44 W Pine St., Gulfport 1 

10 Lawrence St., Biloxi 1 45 46th Ave., Gulfport 10 

11 Division St., Biloxi 5 46 14th Ave., Gulfport 1 

12 Pringle Circle, Biloxi 3 47 Pine Ave., Gulfport 1 

13 Hiller Dr., Biloxi 2 48 7th Ave., Gulfport 12 

14 Claiborne St., Biloxi 2 49 South Carolina Ave., Gulfport 2 

15 Nichols Dr., Biloxi 3 50 Cuandet Rd., Gulfport 1 

16 Benachi Ave., Biloxi 5 51 53rd Ave., Gulfport 2 

17 Popps Ferry Rd., Biloxi 1 52 19th St., Gulfport 1 

18 Water St., Biloxi 1 53 28th St., Gulfport 1 

19 Roy St., Biloxi 2 54 Railroad St., Gulfport 2 

20 Atkinson Rd., Biloxi 2 55 39TH Ave., Gulfport 2 

21 Auburn Dr., Biloxi 2 56 Fournier Ave., Gulfport 2 

22 Strangi Ave., Biloxi 2 57 Halsell Rd., Gulfport 1 

23 Pass Rd., Biloxi 2 58 Pass Rd., Gulfport 2 

24 Atkinson Rd., Biloxi 14 59 Tegarden Rd, Gulfport 4 

25 Pear Dr., Biloxi 1 60 East Augustus St., D'Iberville 1 

26 Judge Sekul Ave., Biloxi 15 61 Popps Ferry Rd., D'Iberville 2 

27 Beach Blvd., Biloxi 1 62 Cedar Dr., D'Iberville 6 

28 Oneal Rd., Gulfport 1 63 Cedar Dr., D'Iberville 1 

29 Tara Hills Dr., Gulfport 1 64 Railroad St., Long Beach 4 

30 19th St., Gulfport 3 65 28th St., Long Beach 1 

31 Central Ave., Gulfport 1 66 Middle Ave Ocean Springs 3 

32 34th St., Gulfport 3 67 Popps Ferry Rd., Biloxi 2 

33 Ohio Ave., Gulfport 2 68 Pass Rd., Gulfport 3 

34 8010 Hwy 49, Gulfport 1 69 Dedeaux Rd., Gulfport 3 
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A homogenous fleet of transit vehicle is used in the emergency evacuation. The 

capacity of the transit vehicle is 30. Each transit vehicle has an onboard equipment that is 

able to receive orders from the SmartEvac system in real time. The dwell time at each 

pickup point is two minutes. 

According to the CTA’s evacuation plan, the emergency evacuation started at 

7:00 AM rush hour. It is assumed that calls from the unregistered evacuees will evenly 

arrive with 3-minute interval. 

CORSIM Simulation Development 

The transportation network data and evacuation data used to build the CORSIM 

network are collected from field survey, CTA, and the Office of Engineering, etc. Figure 

5.2 shows the data used in the simulation. 
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Figure 5.2 Data Used in the CORSIM Simulation 

 

Field surveys were conducted at 23 major intersections in the Gulfport Coast 

region. These intersections are mainly distributed along Pass Road, Highway 605, Canal 

Road, and Popps Ferry Road. Radar detectors and manual counters were deployed at the 

23 intersections for five days to collect daily traffic volumes, peak hour traffic volumes, 

and turning percentage data. Turn prohibitions are implemented at specific intersections 

where prohibitory traffic signs are placed.    

The CORSIM network is shown in Figure 5.3. Interstate 10 runs east and west of 

the Mississippi Gulf Coast region. Other major roadways include I-110, U.S.90, U.S.49, 

Pass Road, Highway 605, and Highway 67. The CORSIM network consists of 1,632 
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links and 1,341 nodes, in which 146 nodes are signalized intersections. The traffic signal 

timing plans were extracted from the City Engineering ACTRA system. 

 

Figure 5.3 CORSIM Network of Gulfport Region 

 

In addition to the intersections and transition nodes, depots, shelters, and pickup 

points are coded in the CORSIM network. In Figure 5.3, depots, shelters, and pickup 

points with registered evacuees are marked with yellow, red, and blue color in the 

CORSIM network, respectively. The shortest travel times among vertices including 

depots, shelters, and pickup points are calculated using a modified Dijkstra Algorithm 

(Wen, 2012) in which turn prohibitions are considered.  

The length of the simulation is two hours which is consistent with the CTA’s 

evacuation plan. Thirty intervals, 1 2 30, , ,t t t , with equal length of three minutes are 

implemented in the simulation. 
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The CORSIM simulation model is fine-tuned with morning rush hour travel time 

data collected in the field. The simulated travel times on two major roads in the area, U.S. 

90 segment between the Bay St. Louis Bridge and the Biloxi Bay Bridge, and Pass Road 

segment between U.S. 49 and Rodeo Drive, compared with those from Google Map and 

historical data of 2008, are shown in Figure 5.4.  

 

Figure 5.4 Travel Time Comparison between Simulation, Google Map, and Historical 
Data 

Notes: EB – Eastbound, WB – Westbound 

Results of Case Study 

To evaluate the performance of the SmartEvac system in an emergency 

evacuation, especially when dynamic factors, such as unregistered evacuees’ pickup 

requests and network interruptions, are considered, the following emergency evacuation 

scenarios are developed. 
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Scenario 1 

Scenario 1 is developed as a base scenario. There are no dynamic factors in the 

emergency evacuation which means that the transit vehicle routes remain fixed all the 

time.  

Results from the SmartEvac system are displayed in Figure 5.5. There are seven 

transit vehicles used in the emergency evacuation. The total travel time of all the seven 

transit vehicle routes is 417.9 minutes. The total computation time is 157 seconds while 

the time for generating columns is 68 seconds. 

 

Figure 5.5 Results from the Scenario 1 

 

Each individual transit vehicle route is listed as follows. 

Route 1: cost = 40.5 minutes and load = 30. 

Node 0 - Node 27 - Node 26 - Node 16 - Node 11 - Node 4 - Node 9 - Node 1 

Route 2: cost = 43.0 minutes and load = 16 
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Node 0 - Node 6 - Node 21 - Node 17 - Node 67 - Node 61 - Node 60 - Node 63 - 

Node 62 - Node 1 

Route 3: cost = 20.4 minutes and load = 18 

Node 0 - Node 24 - Node 20 - Node 23 - Node 3 

Route 4: cost = 48.4 minutes and load = 29 

Node 0 - Node 59 - Node 37 - Node 48 - Node 32 - Node 68 - Node 36 - Node 47 

- Node 3 

Route 5: cost = 79.9 minutes and load = 30 

Node 0 - Node 10 - Node 13 - Node 5 - Node 12 - Node 18 - Node 8 - Node 14 - 

Node 15 - Node 19 - Node 22 - Node 7 - Node 66 - Node 25 - Node 1 

Route 6: cost = 114.1 minutes and load = 29 

Node 0 - Node 44 - Node 39 - Node 50 - Node 57 - Node 69 - Node 29 - Node 28 

- Node 34 - Node 49 - Node 33 - Node 55 - Node 42 - Node 53 - Node 51 - Node 65 - 

Node 64 - Node 2 

Route 7: cost = 71.7 minutes and load = 30 

Node 0 - Node 41 - Node 31 - Node 35 - Node 40 - Node 52 - Node 30 - Node 46 

- Node 58 - Node 45 - Node 43 - Node 54 - Node 56 - Node 38 - Node 2 

Scenario 2 

In order to replicate the scenario that unregistered evacuees call for pickup after 

the emergency evacuation starts, scenario 2 is created based on scenario 1 but new pickup 

requests from unregistered evacuees are generated per interval.   

Take interval t1 as an example. In t1, a new pickup request at node 70 with 

demand of 1 is added in the system. In response to the new request, the SmartEvac 
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system re-optimizes the transit vehicle routes in t2. After optimization, three out of the 

seven routes are adjusted. The updated transit vehicle routes will be implemented in t3, as 

shown in Figure 5.6. 

 

Figure 5.6 Transit Vehicle Routes after Re-optimization in Scenario 2 t1 

 

The total cost of the re-optimized vehicle routes is 398.7 minutes. There are still 

seven transit vehicles used in the emergency evacuation. The computation time for the re-

optimization is 173 seconds. In comparison with the transit vehicle routes in scenario 1, 

route 1, route 3, and route 5 are re-optimized due to the new pickup request at node 70. 

The revisions are shown as follows. 

Route 1: cost = 65.6 minutes and load = 21 

Dummy Node - Node 27 - Node 18 - Node 8 - Node 14 - Node 15 - Node 19 - 

Node 22 - Node 7 - Node 66 - Node 25 - Node 1 
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Figure 5.7 Comparison of Route 1 between Scenario 1 and Scenario 2 t1 

 

Route 3: cost = 33.4 minutes and load = 28 

Dummy Node - Node 23 - Node 10 - Node 12 - Node 5 - Node 13 - Node 20 - 

Node 24 - Node 3 

 

Figure 5.8 Comparison of Route 3 between Scenario 1 and Scenario 2 t1 

 

Route 5: cost = 34.5 minutes and load = 30 
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Dummy Node - Node 26 - Node 16 - Node 11 - Node 4 - Node 9 - Node 70 - 

Node 1 

 

Figure 5.9 Comparison of Route 5 between Scenario 1 and Scenario 2 t1 

 

The new added pickup request at node 70 is serviced by route 5. In order to 

explicitly explain how the SmartEvac system adjusts the vehicle routes for the new 

pickup request, all the pickup points are distributed to eight zones based on their 

geographic location as shown in Figure 5.10. The boundaries of the zones consist of 

major roads and bridges in the region, such as I-110, U.S.90, U.S.49, Pass Road, Popps 

Ferry Bridge. 
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Figure 5.10 The Spatial Distribution of Zones of Pickup Points 

 

The new pickup request, node 70, is located in zone 3. All the pickup points in 

zone 3 are serviced by two vehicles in scenario 1, vehicle 1 on route 1 and vehicle 5 on 

route 5. Obviously, vehicle 1 and vehicle 5 are two candidates to pick up node 70. 

However, both of vehicle 1 and vehicle 5 are full load and no space left for node 70 

according to the original routing plan in scenario 1. Therefore, another vehicle is required 

to partake of vehicle 1 or vehicle 5’s load in order to free up space for node 70. As shown 

in Figure 5.5, there is only one vehicle route, route 3 in zone 1, which covers route 5. No 

vehicle routes can cover route 1 by making trivial revisions. Both of route 3 and route 5 

include Pass Road section from Popps Ferry Road to Veterans Avenue. The SmartEvac 

system is able to reassign the pickup points in this section from route 5 to route 3 to 

release vehicle 5’s capacity. Now vehicle 5 has sufficient capacity to pick up node 70 

because node 10, node 13, node 5, and node 12 are taken over by vehicle 3. 
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However, vehicle 5 is still not the best option to pick up node 70 because node 70 

is farther away from route 5 than route 1. Hence the SmartEvac system swaps vehicle 5’s 

tasks with vehicle 1’s tasks. After swap, vehicle 1’s tasks after picking up node 27 are 

taken over by vehicle 5 and all vehicle 5’s tasks are taken over by vehicle 1. Finally, 

vehicle 5 turns to be the most appropriate vehicle to pick up node 70 and route 5 is 

revised by including node 70.  

A new pickup request per interval is received for 30 intervals. The SmartEvac 

system updates the pickup information and re-optimizes the transit vehicle routes 

accordingly. The results are summarized in Table 5.2. 
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Table 5.2 Results of Scenario 2 with Fixed Interval  

Time Interval Total Cost (Minute) No. of Vehicle Computation Time (Second) 

t0 417.9 7 157 

t1 398.7 7 171 

t2 377.3 7 168 

t3 345.3 7 140 

t4 317.4 7 121 

t5 294.6 7 48 

t6 278.0 7 31 

t7 236.4 6 12 

t8 219.6 6 10 

t9 192.5 5 3 

t10 177.0 5 2 

t11 175.9 5 4 

t12 157.0 5 2 

t13 154.4 5 2 

t14 147.7 5 2 

t15 143.7 5 3 

t16 130.5 4 6 

t17 113.6 3 1 

t18 115.2 3 1 

t19 100.3 3 1 

t20 89.3 3 1 

t21 93.3 3 1 

t22 98.5 3 1 

t23 110.6 3 1 

t24 101.8 2 1 

t25 92.1 2 1 

t26 97.0 2 1 

t27 91.8 2 1 

t28 93.2 2 1 

t29 110.1 3 1 

t30 118.7 3 1 

 

As discussed in Chapter III, dynamic intervals could be implemented in the 

optimization process. The length of interval ti is calculated based on the computation time 

in ti-1. The initial time interval is 180 seconds and the minimum time interval is 60 

seconds. The incremental factor β is 110%. The results of Scenario 2 with dynamic 
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intervals are listed in Table 5.3. Table 5.3 only shows the intervals in which the 

SmartEvac processing the new pickup requests. 

Table 5.3 Results of Scenario 2 with Dynamic Interval  

Total Cost 
(Minute) 

Computation 
Time (Second) 

Interval Length 
(Second) 

Wait Time 
(Second) 

New Request Arrival Time 
(Second) 

417.9 156 180  90 
399.7 171 172 262 285 
376.3 165 188 255 472 
345.2 137 182 249 613 
320.8 119 151 259 790 
296.5 51 131 213 995 
289.9 34 60 68 1155 
248.4 15 60 97 1345 
231.6 11 60 87 1530 
202.5 5 60 82 1680 
187.0 5 60 112 1900 
185.9 4 60 72 2083 
167.0 3 60 69 2257 
164.4 2 60 75 2433 
157.7 6 60 79 2587 
153.7 5 60 105 2801 
138.5 5 60 71 2979 
119.6 4 60 73 3122 
121.2 3 60 110 3350 
106.3 1 60 62 3518 
95.3 1 60 74 3701 
99.3 1 60 71 3891 
104.5 1 60 61 4023 
116.6 1 60 109 4225 
105.8 1 60 87 4419 
96.1 1 60 73 4581 
101.0 1 60 91 4770 
95.8 1 60 82 4931 
97.2 1 60 101 5128 
116.1 1 60 84 5331 
124.7 1 60 61  

 

In scenario 2, there is a total of 30 requests from unregistered evacuees added in 

the emergency evacuation. Figure 5.11 shows the distribution of all evacuees, including 

both registered and unregistered evacuees. 
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Figure 5.11 CORSIM Network with Unregistered Evacuees 

 

Scenario 3 

Scenario 3 is developed base on scenario 2 but certain incidents, such as traffic 

accidents, bridge broken, are implemented. 

Scenario 3(a) 

Assuming that traffic accidents occur on U.S. 90 after the emergency evacuation 

starts, as shown in Figure 5.12, the travel speed on U.S. 90 is severely impacted by the 

accidents. It’s assumed that the average travel time on U.S. 90 in scenario 3 is twice of 

what’s in scenario 2. 
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Figure 5.12 CORSIM Network of Scenario 3(a) 

 

The SmartEvac system is able to capture the travel time surge in real time and 

update the transit vehicle routes accordingly. Assume that the travel time surge happens 

in t1, the updated results comparing with the results from scenario 2 are presented as 

follows. 

Results in scenario 3(a) t1: the total travel time is 408.6 minutes and the 

computation time is 173 seconds. 

Route 1: cost = 74.2 minutes and load = 21 

Dummy Node - Node 27 - Node 18 - Node 8 - Node 14 - Node 15 - Node 19 - 

Node 22 - Node 7 - Node 66 - Node 25 - Node 1 

Route 2: cost = 40.0 minutes and load = 16 

Dummy Node - Node 6 - Node 21 - Node 17 - Node 67 - Node 61 - Node 60 - 

Node 63 - Node 62 - Node 1 

Route 3: cost = 33.7 minutes and load = 28 
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Dummy Node - Node 23 - Node 10 - Node 12 - Node 5 - Node 13 - Node 20 - 

Node 24 - Node 3 

Route 4: cost = 44.7 minutes and load = 29 

Dummy Node - Node 59 - Node 47 - Node 36 - Node 68 - Node 32 - Node 48 - 

Node 37 - Node 3 

Route 5: cost = 36.8 minutes and load = 30 

Dummy Node - Node 26 - Node 16 - Node 11 - Node 4 - Node 9 - Node 70 - 

Node 1 

Route 6: cost = 79.1 minutes and load = 29 

Dummy Node - Node 44 - Node 39 - Node 50 - Node 57 - Node 69 - Node 29 - 

Node 28 - Node 34 - Node 49 - Node 33 - Node 55 - Node 42 - Node 53 - Node 51 - 

Node 65 - Node 64 - Node 2 

Route 7: cost = 42.1 minutes and load = 30 

Dummy Node - Node 41 - Node 31 - Node 35 - Node 40 - Node 52 - Node 30 - 

Node 46 - Node 58 - Node 45 - Node 43 - Node 54 - Node 56 - Node 38 - Node 2 
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Figure 5.13 Transit Vehicle Routes after Re-optimization in Scenario 3(a) Interval t1 

 

Three routes, route 1, route 4, and route 5, are revised due to congestions on U.S. 

90. See Figure 5.14 – Figure 5.16 for a comparison of the results between scenario 2 and 

scenario 3(a). 

 

Figure 5.14 Comparison of Route 1 between Scenario 2 t1 and Scenario 3(a) t1 
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Figure 5.15 Comparison of Route 4 between Scenario 2 t1 and Scenario 3(a) t1 

 

 

Figure 5.16 Comparison of Route 5 between Scenario 2 t1 and Scenario 3(a) t1 

 

In response to the congestions of U.S. 90, the SmartEvac system re-optimize the 

transit vehicle routes in real time. Since route 1’s travel time will increase from 65.6 

minutes to 81.7 minutes due to the congestions of U.S. 90, route 1’ section of U.S. 90 

from Eisenhower Drive to Bellman Street is detoured at Beauvoir Road. Vehicle 1 will be 

diverted to Pass Road, Irish Hill Drive, and Howard Ave which are parallel to U.S. 90. 
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The travel time of route 1 decreases from 81.8 minutes to 74.2 minutes through detour. 

Similarly, route 4’s section of U.S. 90 from Tegarden Road to Eisenhower Driver is 

detoured at Tegarden Road. Vehicle 4 will be diverted to Pass Road. The travel time of 

route 4 decreases from 50.3 minutes to 44.7 minutes. Route 5’s section of U.S. 90 from 

Beauvoir Road to Porte Avenue is detoured at Beauvoir Road. Vehicle 5 will be diverted 

to Pass Road and Irish Hill Drive. The travel time of route 5 will reduced from 43.7 

minutes and 36.8 minutes. In summary, the total travel time saving from the detour on 

route 1, route 4, and route 5 is 20.1 minutes. 

The rest of results in scenario 3(a) from t3 to t30 are listed in Table 5.4. 
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Table 5.4 Results of Scenario 3(a)  

Time Interval Total Cost (Minute) No. of Vehicle Computation Time (Second) 

t0 417.9 7 159 
t1 407.3 7 173 
t2 391.6 7 178 
t3 362.7 7 150 
t4 333.7 7 128 
t5 310.2 7 57 
t6 298.9 7 43 
t7 257.1 7 48 
t8 248.2 6 45 
t9 231.7 5 27 
t10 207.4 5 13 
t11 176.5 5 8 
t12 160.4 5 3 
t13 157.8 5 1 
t14 174.8 5 2 
t15 165.1 5 4 
t16 158.9 4 2 
t17 146.9 4 2 
t18 145.8 4 3 
t19 134.5 4 3 
t20 127.1 4 2 
t21 130.5 5 2 
t22 122.5 4 1 
t23 115.5 4 1 
t24 102.5 3 1 
t25 95.7 3 1 
t26 101.3 2 1 
t27 93.2 2 1 
t28 94.2 2 1 
t29 110.9 3 1 
t30 119.6 3 1 

 

Scenario 3(b) 

Scenario 3(b) is developed based on scenario 3(a) but in addition to the incidents 

on U.S. 90, the Biloxi Bay Bridge is assumed to be broken from t1, which corresponds to 

the actual situation in Hurricane Gustav. The Biloxi Bay Bridge carries U.S. 90 over 
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Biloxi Bay between Biloxi and Ocean Springs, as shown in Figure 5.17. Route 1 passes 

the Biloxi Bay Bridge in scenario 3(a). 

 

Figure 5.17 CORSIM Network of Scenario 3(b) 

 

The results of scenario 3(b) in t1 are summarized as follows. The total travel time 

is 410.6 minutes and the computation time is 177 seconds. 

Route 1: cost = 63.4 minutes and load = 26 

Dummy Node - Node 27 - Node 5 - Node 18 - Node 8 - Node 14 - Node 7 - Node 

22 - Node 15 - Node 19 - Node 9 - Node 4 - Node 70 - Node 1 

Route 2: cost = 71.0 minutes and load = 20 

Dummy Node - Node 6 - Node 21 - Node 17 - Node 67 - Node 61 - Node 60 - 

Node 63 - Node 62 - Node 25 - Node 66 - Node 1 

Route 3: cost = 15.2 minutes and load = 18 

Dummy Node - Node 24 - Node 20 - Node 23 - Node 3 
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Route 4: cost = 45.1 minutes and load = 29 

Dummy Node - Node 59 - Node 47 - Node 36 - Node 68 - Node 32 - Node 48 - 

Node 37 - Node 3 

Route 5: cost = 36.7 minutes and load = 27 

Dummy Node - Node 10 - Node 13 - Node 12 - Node 26 - Node 16 - Node 11 - 

Node 1 

Route 6: cost = 110.8 minutes and load = 28 

Dummy Node - Node 44 - Node 39 - Node 50 - Node 57 - Node 69 - Node 29 - 

Node 28 - Node 34 - Node 49 - Node 33 - Node 55 - Node 42 - Node 53 - Node 51 - 

Node 65 - Node 64 - Node 2 

Route cost = 68.4 minutes and load = 30 

Dummy Node - Node 41 - Node 31 - Node 35 - Node 40 - Node 52 - Node 30 - 

Node 46 - Node 58 - Node 45 - Node 43 - Node 54 - Node 56 - Node 38 - Node 2 

Figure 5.18 shows the updated transit routes in scenario 3(b) t3. 

 

Figure 5.18 Updated Transit Routes in Scenario 3(b) t3 
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Four routes, route 1, route 2, route 3, and route 5, are revised after the Biloxi Bay 

Bridge broken. See Figure 5.19 – Figure 5.22 for a comparison of the results between 

scenario 3(a) and scenario 3(b) in t1. 

 

Figure 5.19 Comparison of Route 1 between Scenario 3(a) t3 and Scenario 3(b) t3 

 

 

Figure 5.20 Comparison of Route 2 between Scenario 3(a) t3 and Scenario 3(b) t3 
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Figure 5.21 Comparison of Route 3 between Scenario 3(a) t3 and Scenario 3(b) t3 

 

 

Figure 5.22 Comparison of Route 5 between Scenario 3(a) t3 and Scenario 3(b) t3 

 

In scenario 3(b), the Biloxi Bay Bridge is hypothetically broken after the 

emergency evacuation starts. As a result, route 1 in scenario 3(a) is no longer applicable 

to node 25 and node 66. After re-optimization, node 25 and node 66 are assigned to route 

2 vehicle 2 which is the nearest vehicle capable of picking them up. Because node 25 and 

node 66 are removed from route 1, vehicle 1 will has sufficient capacity to pick up node 

4, node 9, and node 70 which are originally carried by vehicle 5. The pickup points in 
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zone 3 are divided into two groups by the Biloxi Bay Bridge and the U.S. 110 Bridge 

over the Back Bay. The first group including node 25 and node 66 are assigned to vehicle 

2 and the second group including the rest of nodes in zone 3 are covered by vehicle 1. 

This re-assignment impacts route 3 and route 5 as well. The pickup points along with 

Pass Road section between Popps Ferry Road and Rodeo Drive are distributed to route 3 

and route 5 optimally.  

The rest of results from t3 to t30 are listed in Table 5.5. 
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Table 5.5 Results of Scenario 3(b)  

Time Interval Total Cost (Minute) No. of Vehicle Computation Time (Second) 

t0 417.9 7 161 
t1 410.6 7 177 
t2 394.9 7 180 
t3 365.6 6 156 
t4 337.5 6 135 
t5 314.7 6 54 
t6 301.8 7 50 
t7 260.2 5 47 
t8 251.4 5 44 
t9 237.1 5 31 
t10 216.8 5 23 
t11 192.5 5 13 
t12 172.2 5 9 
t13 167.8 4 6 
t14 182.5 4 3 
t15 169.5 4 3 
t16 158.1 3 3 
t17 146.4 4 2 
t18 147.4 4 2 
t19 136.2 4 1 
t20 128.9 3 1 
t21 132.4 4 1 
t22 124.6 4 1 
t23 117.1 4 1 
t24 104.3 2 1 
t25 97.0 2 1 
t26 103.1 2 1 
t27 94.9 2 1 
t28 94.7 2 1 
t29 111.5 3 1 
t30 120.1 3 1 

 

Scenario 4 

In some cases, the transit agency requires to minimize the cumulative time that 

the evacuees exposes to potential risks. Scenario 4 is developed considering this 

requirement. The objective is changed to minimize the total time that the evacuees stay in 
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the hurricane affected area before they are evacuated to the shelters. The results are 

presented as follows. 

The total travel time is 426.6 minutes and the computation time is 173 seconds. 

Route 1 cost = 43.2, load = 28 

Node 0 - Node 23 - Node 10 - Node 13 - Node 5 - Node 12 - Node 20 - Node 24 - 

Node 3 

Route 2 cost = 65.8, load = 20 

Node 0 - Node 18 - Node 8 - Node 14 - Node 15 - Node 19 - Node 22 - Node 7 - 

Node 66 - Node 25 - Node 1 

Route 3 cost = 93.3, load = 29 

Node 0 - Node 41 - Node 44 - Node 39 - Node 57 - Node 50 - Node 29 - Node 28 

- Node 69 - Node 6 - Node 21 - Node 17 - Node 67 - Node 60 - Node 61 - Node 62 - 

Node 63 - Node 1 

Route 4 cost = 72.3, load = 22 

Node 0 - Node 32 - Node 34 - Node 49 - Node 33 - Node 55 - Node 58 - Node 43 

- Node 54 - Node 56 - Node 38 - Node 64 - Node 2 

Route 5 cost = 45.6, load = 29 

Node 0 - Node 59 - Node 37 - Node 48 - Node 68 - Node 36 - Node 46 - Node 30 

- Node 3 

Route 6 cost = 65.6, load = 24 

Node 0 - Node 31 - Node 35 - Node 47 - Node 52 - Node 40 - Node 45 - Node 51 

- Node 42 - Node 53 - Node 65 - Node 2 

Route 7 cost = 40.8, load = 30 
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Node 0 - Node 27 - Node 26 - Node 11 - Node 16 - Node 9 - Node 4 - Node 1 

Figure 5.23 shows the updated transit routes in Scenario 4 t1. 

 

Figure 5.23 Transit Routes in Scenario 4 t1 

 

Results Analysis 

Computation Time 

The statistics of the computation time for the three scenarios are displayed in 

Figure 5.24. First, the SmartEvac system generates an initial solution using 157 seconds 

for the network with 74 nodes. Then, the computation time increases as the network size 

grows with new added pickup points and dummy points. The peak computation times are 

171 seconds for scenario 2, 178 seconds for scenario 3(a), and 180 seconds for scenario 

3(b), which meets the design standard. The average computation times are 28.9 seconds, 

34.3 seconds, and 35.9 seconds, in scenario 2, scenario 3(a), and scenario 3(b), 

respectively. In addition, the computation time shows similar tendency for all the three 
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scenarios that it drops sharply from the 5th interval. The primary reason for this 

phenomenon is that the network size starts to decrease with the completion of part of the 

pickup requests. For example, in scenario 2, the network size drops from 76 to 65 in the 

5th interval. Another reason is that, as discussed in Chapter III, the initial routes set R for 

each interval is gradually improved with the SmartEvac system running. A high quality 

initial routes set R is able to accelerate the convergence of the column generation 

algorithm and thus reduce the computation time (Toth et al., 2001).  

 

Figure 5.24 Computation Time in Scenario 2, Scenario 3(a), and Scenario 3(b) 

 

Response to Evacuation Information Updates 

The ability that the SmartEvac system responses to the dynamic evacuation 

information, such as new pickup requests, is a primary indicator of the SmartEvac 

system’s applicability in a real time emergency evacuation. The system response time is 

defined as the interval from a new pickup request coming into the system to the 
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implementation of an updated transit vehicle routing plan considering the new pickup 

request. It is assumed that the arrival of the new pickup requests are uniformly loaded in 

the emergency evacuation process. Since the SmartEvac system updates the evacuation 

information at the end of each interval and re-optimizes the transit vehicle routes in the 

next interval, the average response time to a new pickup request is 3t/2 in scenario 2 with 

fixed time interval, where t is the length of the interval. Therefore, the average response 

time is related with the length of time interval that the SmartEvac system needs to collect 

dynamic evacuation information and do re-optimization. However, because of the 

computation burden at the initial stage of the evacuation process, the fixed interval is 

usually very lengthy but becomes redundant when the network size decreases to around 

60 nodes. In order to overcome the deficiency with fixed time interval, dynamic time 

interval is applied in scenario 2.  

The advantage of dynamic interval is that its length can be dynamically adjusted 

based on its previous interval’s length and computation time. Figure 5.25 draws a 

comparison of response time between scenario 2 with fixed interval and Scenario 2 with 

dynamic interval. The response time in scenario 2 with dynamic interval drops 

continually until the 8th interval after which the response time fluctuates around 100 

seconds. The average response time with dynamic interval is 110.8 seconds in contrast 

with 270.2 seconds with fixed interval. 
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Figure 5.25 Response Time in Scenario 2 with Fixed Interval and Dynamic Interval 

 

Comparison with Real Evacuation Results 

An effective way to validate the system is to compare with the results from real 

Hurricane Gustav evacuation. In Hurricane Gustav evacuation, CTA employed 15 transit 

vehicles, 15 drivers. There were total 15 vehicle-trips in the whole evacuation process. 

Table 5.6 summarized the SmartEvac system’s results and the results from CTA’s record. 

Table 5.6 Comparison of SmartEvac system’s results and CTA’s record  

 SmartEvac CTA Operations % Saving 

Total Evacuation Time (min) 417.9 637.5 34.4 

Average Response Time (min) 1.4 10 86.0 

No. of Vehicles Used in the Evacuation 7 15 53.3 

 

The results from the SmartEvac system are much more efficient in terms of the 

total evacuation time, average response time, and number of vehicles used in the 



www.manaraa.com

 

121 

evacuation. The total evacuation time improved 34.4% by the SmartEvac system. Most 

importantly, the SmartEvac system would response to a new pickup request under two 

minutes while the CTA requires 10 minutes on average. There are only seven vehicles 

used by the SmartEvac system which is much less than 15 of CTA’s usage. All the above 

results demonstrate that the SmartEvac system significantly outperforms the CTA’s old 

system. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

This dissertation developed a SmartEvac system for real time transit vehicle 

routing optimization in an emergency evacuation. The objective of the SmartEvac system 

is to reduce the total travel time of all transit vehicles. In some cases, the objective is 

revised to minimize the total exposure time of all evacuees.  

A column generation based CDVRPPD model is integrated into the SmartEvac 

system. In a static scheme, the difference between the CDVRPPD model and traditional 

VRP model is that transit vehicles have to deliver the evacuees to a shelter instead of the 

depot where they depart. Hence additional constraints are added to the CDVRPPD model 

for pickup and delivery. In a real-time scheme, the model is reformulated in each interval 

over the planning horizon. Essentially, the dynamic model can be converted from a multi-

depot CDVRPPD to a single-depot CDVRPPD by introducing dummy pickup points. The 

conversion can obviously reduce the complexity of the CDVRPPD model. Furthermore, 

dynamic intervals, whose interval length is determined based on the computational 

performance of last interval, are implemented over the planning horizon. Case study has 

demonstrated that the response time of the SmartEvac system can be greatly improved by 

the implementation of dynamic intervals. 



www.manaraa.com

 

123 

The CDVRPPD model is formulated in a set covering form. The set covering 

model typically contains an exponential number of variables which is impractical to solve 

it directly. Therefore, a column generation method, which progressively expands the 

routes set towards the optimum solution instead of enumerating all the routes, is applied 

to solve the model. The column generation operation is based on a master-problem and 

sub-problem structure. The master problem model guides the routes set expansion while 

the sub-problem model is developed to price out all the routes which are necessary to 

construct an optimal solution. In a real-time scheme, the initial routes set is generated by 

integrating Clarke-Wright saving algorithm with insertion heuristic. The routes set from 

previous interval is revised to be initial routes set of current interval. In order to improve 

the lower bound, a cycle elimination algorithm is proposed to solve the pricing sub-

problem. The cycle elimination algorithm firstly adopts a 2-cycle elimination procedure 

(Larsen, 1999) to erase the cycles of length 2 in the solution. Then, a structural resource 

is iteratively imposed to the nodes which form cycles of length > 2. This procedure can 

effectively eliminate the cycles with length > 2 so that the lower bound is significantly 

improved. The computational results indicate that the average improvement of lower 

bound reaches 12.5% on the benchmark problems in compare with Agarwal, Mathur, and 

Salkin (1989), Bixby (1998), and Hadjiconstantinou, Christofides, and Mingozzi (1995)’s 

results in the literature. In addition, the computation time still locates in an affordable 

range for a real-time system when dealing with the clustered benchmark problems with 

network size of 50 – 100. The increase of computational time by introducing cycle 

elimination reveals that the system is suitable for a network of size around 100.  
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A case study based on Hurricane Gustav evacuation is proposed to demonstrate 

the SmartEvac system in real scenarios. CORSIM simulations are developed to provide 

data for the SmartEvac system. Transportation network data in Gulf Coast area are 

collected in field survey. CORSIM RTE is developed as an interface to exchange data 

between CORSIM simulation and the SmartEvac system. Different scenarios 

corresponding to the different situations that happened in the Hurricane Gustav 

emergency evacuation are proposed to evaluate the performance of the SmartEvac system 

in response to real-time data. The average processing time is 28.9 seconds and the 

maximum processing time is 171 seconds (scenario 2), which demonstrate the SmartEvac 

system’s capability of real-time vehicle routing optimization.  

In summary, the major contribution of this dissertation is the development of a 

SmartEvac system which is able to handle real-time transit vehicle routing in an 

emergency evacuation of 200 – 250 evacuees. Traditional VRP model is revised to be 

applicable in a real-time scheme. The implementation of dynamic intervals could 

effectively reduce the system response time to an emergency. In addition, the proposed 

cycle elimination algorithm could tight the lower bound without contaminating the 

overall performance of the system. 

Future Work 

Related studies which are not in the scope of this dissertation will be conducted in 

the future. The followings summarized the future work. 

1. Parallel computing. In this dissertation, the column generation algorithm can 

handle problems up to about 100 evacuees. For larger problems, parallel 

computing, which increases the computation power, can be a good method. To 
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implement parallel computing, an efficient parallel algorithm is necessary. 

Potential implementation of parallel computing is to use two phase algorithm, 

where the evacuees are clustered first, and then routing is performed in each 

cluster. In this scheme, a master computer is in charge of clustering and other 

parallel computers are in charge of routing in each cluster. Another potential 

implementation of parallel computing is to introduce the branching and 

bounding procedure when solve the master problem as an integer problem. 

The master computer is able to handle the termination of the algorithm while 

other parallel computers solve at different branch and bound nodes. In the 

past, results from Larsen (1999) and Clausen (1999) showed that parallel 

computing can efficiently solve CDVRP up to 500 customers with proper 

implementation. 

2. More Efficient Algorithms. In the future, more efficient algorithms are 

expected to be implemented in the system. Meta-heuristics, such as tabu 

search and simulated annealing, have been demonstrated their effectiveness in 

solving large scale vehicle routing problems. Therefore, the SmartEvac 

system is expected to implement or combine with certain meta-heuristic 

algorithm, which will make it more applicable in a large scale evacuation. 

Although the results from a meta-heuristic algorithm may not be optimum, 

most of time it is still acceptable under emergency situations.  

3. Web-based Interface Development. A web interface for the SmartEvac system 

is in the scope of future work so that authorized transit agencies can access the 

service anytime through internet/intranet. A user-friendly interface will be 
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developed. The service will receive dynamic evacuation information and 

traffic information updates and generate the transit operation plan in real time. 

Transit agencies can push the outputs into GIS messages, which can be sent to 

the transit driver’s smart phones with Google Navigation.  

4. Travel Time Prediction Improvement. In this dissertation, the travel time for 

the next interval is predicted using a moving average method. However, the 

parameter λ is unified throughout the network. This implementation could be 

improper when the travel time changes drastically in the evacuation. In the 

future, λ may be assigned different values for different areas. For example, λ is 

smaller in rural area than in urban area. In addition, the value of λ can be 

dynamically adjust along with the time. 
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